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Preface

From 1891 to 1933, David Hilbert gave a series of lectures on the foundations of
mathematics and physics. Those unpublished lectures became available in a
six-volume edition released by Springer Verlag. Hilbert’s lectures and his personal
interactions exercised a profound influence on the development of twentieth-
century mathematics and physics.

In his address to the second International Congress of Mathematicians on
Wednesday, the August 8, 1900, in Paris at the turn of the century, Hilbert began
with the following words [1]:

Wer von uns wüurde nicht gern den Schleier luften, unter dem die Zukunft verborgen liegt,
um einen Blick zu werfen auf die bevorstehenden Fortschritte unsrer Wissenschaft und in
die Geheimnisse ihrer Entwickelung wäahrend der küunftigen Jahrhunderte! Welche
besonderen Ziele werden es sein, denen die fuhrenden mathematischen Geister der kom-
menden Geschlechter nachstreben? welche neuen Methoden und neuen Thatsachen werden
die neuen Jahrhunderte entdecken - auf dem weiten und reichen Felde mathematischen
Denkens?

Who of us would not be glad to lift the veil behind which the future lies hidden; to cast a
glance at the next advances of our science and at the secrets of its development during
future centuries? What particular goals will there be toward which the leading mathematical
spirits of coming generations will strive? What new methods and new facts in the wide and
rich field of mathematical thought will the new centuries disclose?

Hilbert then went on to deliver a list of 23 problems for the twentieth century.
The sixth problem is of particular concern for us. Indeed, it is in problem number 6
that Hilbert outlined his program for axiomatizing physics with the intent of putting
it on the same level as axiomatized geometry:

The investigations on the foundations of geometry suggest the problem: To treat in the
same manner, by means of axioms, those physical sciences in which mathematics plays an
important part . . .

If geometry is to serve as a model for the treatment of physical axioms, we shall try first, by
a small number of axioms, to include as large a class as possible of physical phenomena,
and then, by adjoining new axioms, to arrive gradually at the more special theories. At the
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same time, Lie’s principle of subdivision can perhaps be derived from the profound theory
of infinite transformation groups. The mathematician will also have to take account not only
of those theories that approach reality, but also, as in geometry, of all logically possible
theories. He must be always alert so as to obtain a complete survey of all conclusions
derivable from the system of axioms assumed.

Hilbert’s work on the foundations of mathematics has its roots in his work on
geometry of the 1890s, culminating in his influential textbook Foundations of
Geometry (1899). Hilbert believed that the properly rigorous way to develop any
scientific subject required an axiomatic approach. Through provision of an axio-
matic treatment, the theory would be developed independent of any need for
intuition, and it would facilitate an analysis of the logical relationships between the
basic concepts and the axioms. Moreover, Hilbert’s view of physics from a
mathematician’s perspective becomes quite explicit in remarks he made regarding
the relationship between physics and geometry. Hilbert regarded geometry as a
genuine branch of mathematics, so it had become mathematized, arithmetized, and
eventually axiomatized, and was no longer subject to experimental examination.
For Hilbert, this development was the proper advancement of science, and not
simply an account of the factual historical development. An advancement should be
furthered wherever possible.

Thus, as early as 1894, in a lecture on geometry that he gave while still in
Königsberg, Hilbert said:

Geometry is a science that essentially has developed to such a state that all its facts may be
derived by logical deduction from previous ones [2, 3].

Later in this lecture, in the course of discussing the axiomatic foundations of
geometry, he presented the axiom of parallels and discussed the alternatives of
Euclidean, hyperbolic, and parabolic geometries. In this context, he remarked:

Now, all other sciences are also to be treated following the model of geometry, first of all
mechanics, but then optics and electricity theory as well [2, 3].

Many of the world’s great scientific truths are based totally upon mathematical
formulation. The extraordinarily results have left the originators obliged to admit to
some mysterious and intimate connection between the physical world and its
abstract mathematical counterpart. To quote Einstein himself:

Here arises a puzzle that has disturbed scientists of all periods. How is it possible that
mathematics, a product of human thought that is independent of experience, fits so
excellently the objects of physical reality? [4].

These quotations demonstrate that, while the fields of mathematics and physics
were considered separate, there was still a strong conjunction between them. The
great upheavals in Physics in the first quarter of the twentieth century only deep-
ened the relation between physics and mathematics. In his stunning 1931 paper (in
which he predicted the existence of three new particles), Dirac was both eloquent
and exuberant at the very outset:
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The steady progress of physics requires for its theoretical formulation a mathematics that
gets continually more advanced … What, however, was not expected by the scientific
workers of the last century was the particular form that the line of advancement of the
mathematics would take, namely, it was expected that the mathematics would get more and
more complicated, but would rest on a permanent basis of axioms and definitions, while
actually, the modern physical developments have required a mathematics that continually
shifts its foundations and gets more abstract … It seems likely that this process of
increasing abstraction will continue in the future . . . [5].

Around the same time, Einstein expressed similar sentiments:

Our experience up to date justifies us in feeling sure that in Nature is actualized the ideal of
mathematical simplicity. It is my conviction that pure mathematical construction enables us
to discover the concepts and the laws connecting them which give us the key to the
understanding of the phenomena of Nature. Experience can, of course, guide us in our
choice of serviceable mathematical concepts; it cannot possibly be the source from which
they are derived; experience, of course, remains the sole criterion of the serviceability of a
mathematical construction for physics, but the truly creative principle resides in mathe-
matics. In a certain sense, therefore, I hold it to be true that pure thought is competent to
comprehend the real, as the ancients dreamed [6].

Concerning the atomic physics and the fact that Quantum Mechanics, using
radically new concepts, such as the linear superposition of states and the uncertainty
principle, required an entirely new mathematical framework, Dirac wrote:

Quantum mechanics requires the introduction into physical theory of a vast new domain of
pure mathematics -the whole domain connected with non-commutative multiplication.
This, coming on top of the introduction of the new geometries by the theory of relativity,
indicates a trend which we may expect to continue. We may expect that in the future,
further big domains of pure mathematics will have to be brought in to deal with the
advances in fundamental physics [7].

Mathematics and Physics: A Common Matter?

Since Hilbert, conferences, physics, and mathematics have experienced great
upheavals, with new ideas invading the two areas of study. Several ideas from
physics have allowed for a better understanding of certain mathematical problems
and their resolution. Indeed, over the past 50 years, a new type of interaction has
taken place, as has happened frequently in the past, in which physicists, while
exploring their new and still speculative theories, have stumbled across a whole
range of mathematical discoveries.

The physicists’ approach was derived by physical intuition and heuristic argu-
ments, which are beyond the reach, as yet, of mathematical rigour, but which have
withstood the tests of time and alternative methods. The impact of these discoveries
on mathematics has been profound and widespread. Areas of mathematics such as
topology and algebraic geometry, which lie at the heart of pure mathematics and
appear very distant from the physics frontier, have been dramatically affected.
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This development has led to many hybrid subjects, such as topological quantum
field theory, quantum cohomology, and quantum groups, which are now central
topics of research in both mathematics and physics. Remarkably, modern physical
constructions such as quantum field theory and string theory, which are very far
removed from everyday experience, have proven to be a similarly fertile setting for
mathematical problems. Indeed, in many ways, quantum theory has turned out to be
an even more effective framework for mathematics than classical physics. Particles
and strings, fields and symmetries, they all have a natural role to play in mathe-
matics. Understanding this is the great problem of our time.

Truth, Depth, and Beauty

Many mathematicians and physicists share the view that the beauty of mathematics
is a guide toward a theory whose coherence and simplicity aids our comprehension
of nature. Beauty is what guides the mathematician, while the physicist searches for
truth, consistent with experiment. The mystery of the effectiveness of mathematics
in fundamental physics is much deeper than just the miracle of its astonishing utility
[9]. We aim to describe the microscopic laws in terms of simple mathematics, but,
as we probe deeper, to microscopic scales, we require deeper mathematical struc-
tures. But beyond that, these mathematical structures are not just deep—they are
also interesting, beautiful, and powerful. As Dirac put it:

It seems to be one of the fundamental features of nature that fundamental physical laws are
described in terms of great beauty and power and, as time goes on, it becomes increasingly
evident that the rules that the mathematician finds interesting are the same as those that
Nature has chosen [10].

On the relation between mathematics and Nature, Hermann Weyl wrote:

There is inherent in nature a hidden harmony that reflects itself in our minds under the
image of simple mathematical laws. That then is the reason why events in nature are
predictable by a combination of observation and mathematical analysis. Again and again in
the history of physics, this conviction, or should I say this dream, of harmony in nature has
found fulfillments beyond our expectations [11, 12].

To appreciate mathematical beauty may require, as in music, extensive education
and training, and it is always a subjective judgment. Nonetheless, there tends to be a
large degree of consensus among mathematicians and physicists that the beautiful
parts are those that explain the forces of nature as arising from principles of
symmetry.

These are beautiful to physicists since, from a simple principle of symmetry, we
deduce, in an almost unique fashion, via gauge theories, the nature of the funda-
mental forces and the existence of the carriers of these forces. The ugly parts are
those that describe the strange spectrum of matter, which does not appear to follow
from any symmetry principle. To agree with experiment, one requires far too many
parameters to be put in by hand. Einstein’s dream was that the ugly should be made
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beautiful, and that geometry should totally unify spacetime and matter. This is the
task for us all, a task that may yet take the whole twenty-first century and beyond.

Supported by prominent scientists in mathematics and physics, this book cele-
brates the centenary of Hilbert’s work on the foundations of physics and mathe-
matics, and explores the rich new perspectives resulting from the deep interplay
between mathematics and physics during the twentieth century. The result is a
broad journey through the most recent developments in both mathematics and
physics.

In mathematics, the journey takes us through differential and algebraic geometry,
to topology, noncommutative geometry, and twistor theory.

In physics, the journey takes us through gauge and quantum field theories to
string theory and quantum gravity.

Edinburgh, UK Michael Atiyah
2018 Joseph Kouneiher
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Summary

The project of this book is the result of the desire of prominent scientists in
mathematics and physics to, first, celebrate the centenary of Hilbert’s work on the
foundations of physics and mathematics, and second, to explore the rich new
perspectives resulting from the deep interplay between mathematics and physics
during the twentieth century. The papers published in this volume provide insight
into their works, and analyze the impact of the breakthrough and the perspectives
of their own contributions.

In his contribution, Leo Corry describes the motivations of Hilbert’s Unified
Foundations of Physics. He presents the two main pillars on which Hilbert’s built
his own theory as presented in Göttingen in November 1915. To do so, he discusses
the contents of Mie’s electromagnetic theory of matter and explains the context in
which the theory needs to be understood as part of contemporary debates on
gravitation in which also Einstein took part. He reviewed also the way in which
Max Born mediated between Mie and Hilbert by presenting the formers work in a
way that would be amenable to Hilbert’s current scientific interests. Finally, he
gives a brief account of Hilbert’s talk of November 1915 and explains its contents
against the background of the ideas of Gustav Mie’s electromagnetic.

The common paper of Kouneiher and Stachel highlights the twenty-odd-year
relationship between Einstein and Hilbert and traces the relationship between the
two men during this period in the form of encounters, each of which characterizes a
particular aspect of their relationship and their impact on the final form of Einstein
equation and the way to derive it.

Colin Maclarty’s contribution is a fine analysis of Grothendieck’s vast unifying
vision which provided new working and conceptual foundations for geometry, and
even led him to logical foundations. Maclarty clarifies Grothendieck attitude of
mind by favoring the words and commutative diagrams over pictures and refusing
to think the geometry pictorially. This contrasts with the mainstream attitude where
the majority prefer the pictures as illustrations of the geometry. We can see how, by
using such approach, Grothendieck construct his mathematical and geometrical
universe of topos and schemes.
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In his contribution A Dozen Problems, Questions and Conjectures about
Positive Scalar Curvature (SC > 0), Gromov invites us to explore and discover new
paths and challenges us to open windows that give access to new facts in geometry
of the domain (SC > 0). One of the beauties of the author’s approach to geometry is
his gritty hands-on method, dealing with basic concepts that one could explain to a
nonexpert, rather than heading on a long trek of increasing abstraction. It is at the
same time simple, but extraordinarily difficult to put into practice, and of course
requires great insight to know where to look for answers. The author deals primarily
with the difficult domain of positive scalar curvature. The paper reminds us that in
spite of the remarkable advances in Riemannian geometry in recent years, there is
still a wealth of fundamental unresolved problems.

In his contribution, Michael Atiyah presents a proof of a long-standing con-
jecture concerning the six-dimensional sphere and the possibility to have a complex
structure. To do so, he uses two aspects: a hypothetical complex structure without
any symmetry assumptions and he considers the case of conformal sphere S6 and
not the round sphere S6. More precisely, he uses the fact that S6 is a homogeneous
space of the conformal group Spiny(7; 1), which preserves future and past. The
proof is a master class move in mathematics. The author suggests also to shed new
light on many problems of physics: In the future I expect these ideas will provide a
different perspective, with substantial benefits in all areas.

The subject of Edward Witten’s contribution1 is one of the big breakthrough
ideas in mathematical physics in the twentieth century, the strings theories, with a
new paradigm based on the conception of elementary particle as one-dimensional
string.2 The aim of this contribution is to describe the minimum that any physicist
should know about string theory, focusing on a few basic questions. How does
string theory generalize standard quantum field theory? Why does string theory
force us to unify general relativity with the other forces of nature, while standard
quantum field theory makes it so difficult to incorporate general relativity? Why are
there no ultraviolet divergences in string theory? And what happens to Einstein’s
conception of spacetime? For instance, as we know, in general, a string theory
comes with no particular spacetime interpretation. The spacetime M emerges
through the link between its metric tensor GIJ(X) and a particular 2D conformal
field theory. That is the only way that spacetime entered the story.

Witten tries to answer all these questions with clarity and simplicity whenever it
is possible.

In his contribution, Roger Penrose Twistor Theory as an Approach to
Fundamental Physics describes the original motivations underlying the introduction
of twistor theory which has been pioneered by him and others since the 1960s. The
primary objective of twistor theory originally was—and still is—to find a deeper
route to the working nature; so the theory should provide a mathematical

1An earlier and restraint version of this paper was published in physics today.
2Later on, people understood that some objects as Branes play also an essential and fundamental
role in the theory conception.
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framework with sufficient power and scope, to help us toward resolving some of the
most obstinate problems of current physical theory. One of the original motivations
was to unify general relativity and quantum mechanics in a nonlocal theory based
on complex numbers. The application of twistor theory to differential equations and
integrability has been an unexpected spin-off from the twistor program.

In capturing both relativity and quantum mechanics, twistor theory demands
some modifications of both. For example, it allows for the introduction of nonlinear
elements into quantum mechanics, which are in agreement with some current
interpretations of the measurement process: The collapse of the wave function
contradicts the principle of unitary time evolution, and it has been proposed that this
failure of unitarity is due to some overtaking nonlinear gravitational effects. The
main two ingredients of twistor theory are non-locality in spacetime and analyticity
(holomorphy) in an auxiliary complex space, the twistor space.

Alain Connes’s contribution has the ambition of answering the questions posed
by the divers temptations to create a theory founded on the principle of quantum
mechanics and general relativity and which goes beyond their limit to integrate the
gauge theories and matter. The point of view adopted in this essay is to try to
understand from a mathematical perspective, how the perplexing combination
of the Einstein–Hilbert action coupled with matter, with all the subtleties such as the
Brout–Englert–Higgs sector, the V-A and the see-saw mechanisms, etc., can
emerge from a simple geometric model. The new tool is the spectral paradigm, and
the new outcome is that geometry does emerge on the stage where quantum
mechanics happens, i.e., Hilbert space and linear operators. In his contribution,
Alain Connes introduce the noncommutative geometry and the spectral paradigm
developed by the author since 1980s. It is based on the Hilbert space formalism of
quantum mechanics and on mathematical ideas coming from K-theory and index
theory. This new paradigm of geometry provided a new perspective on the geo-
metric interpretation of the detailed structure of the standard model and of the
Brout–Englert–Higgs mechanism.

With Ali Chamseddine, they understood that they could obtain the full package
of the Einstein–Hilbert action of gravity coupled with matter by a fundamental
spectral principle. In the language of NCG, this principle asserts that the action only
depends upon the “line element”, i.e., the inverse of the operator D. The presence
of the other fields forces, due to renormalization, the addition of higher derivative
terms of the metric to the Lagrangian and this in turns introduces at the quantum
level an inherent instability that would make the universe blow up. The approach
used in this contribution is based on the idea of “particle picture” for geometry,
allowing to stay very close to the inner workings of the standard model coupled to
gravity.

Ali Chamsddine’s contribution forms a logical continuation to Alain Connes’s
one in this volume. Notice that all the material covered in Chamsddine review is a
result of a long-time collaboration with Alain Connes. The author shows that
starting with the axioms of noncommutative geometry supplemented by a minimal
number of physical assumptions would result, unambiguously, in a unified theory
of all fundamental interactions and matter content of spacetime. And so they will be
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able to establish a link between the quantization of volume of space at Planck
energy and the constituents of matter and their symmetries. In addition, he uncovers
the origin of the Higgs fields and symmetry breaking, and indicates possible
solutions to long-standing problems such as resolving the singularities in GR, dark
matter, and dark energy.

The author of What are we missing in our search for quantum gravity?, Lee
Smolin, starts his contribution by considering the various approaches to quantum
gravity and asks the question why, in spite of many efforts, we have not yet found
the true theory of quantum gravity. He makes a succinct analysis of the causes
of the failures of different approaches and suggests to consider them as different and
complementary models of a single theory to be found by a common effort and an
explicit choice of a scientific approach based on a more general physical principle.
The idea is that, in the absence of a real experience at the Planck scale to guide us
and inspired by various developed models, we can at least get back and make some
reflections on what we may be missing in our search for quantum gravity.

In their contribution, Attard, François, Lazzarini, and Masson propose a review
of gauge theory, one of the most profound breakthrough ideas of twentieth century
in mathematical physics. More precisely, they describe another way to perform
gauge symmetry reduction which they call the dressing field method. It is for-
malized in the framework of the differential geometry; it has a corresponding BRST
differential algebraic formulation. The method boils down to the identification of a
suitable field in the geometrical setting of a gauge theory that allows to construct
partially of fully gauge invariant variables out of the standard gauge fields. This
formalizes and unifies several works and approaches which found origins in Dirac’s
pioneering works.

Butterfield and De Haro’s contributions propose a schema to understand duality
between models in physics. Notice that the idea of the duality is one of the chal-
lenging ideas of the twentieth-century physics and mathematics. This paper is
written for physicists as well as for philosophers of sciences. The approach uses a
formalization of the notions of theories, models and what the mean of a duality in
this framework. Discussions are given to illuminate some crucial points of this
formal approach. The main proposed example concerns the duality known as
“bosonization”, which establishes an equivalence between two physical models:
one based on bosons and the other on fermions. The authors insist, on one hand, on
the fact that this boson duality, by contrast with other dualities in physics, is exact
and on the other hand its role in both cases of isomorphic and non-isomorphic
models.

In their contribution “Syntactic Phylogenetic Trees”, M. Marcolli, K. Shu,
S. Aziz, V. Y. Huynh, and D. Warrick try to apply some methods that came from
mathematics and computational methods developed in the context of mathematical
biology in the linguistic domain. They start by identifying several serious problems
that arise in the use of syntactic data from the SSWL database for the purpose of
computing phylogenetic trees of language families in the context of the field of
historical linguistics.
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They show that the most naive approach fails to produce reliable linguistic
phylogenetic trees and identifies some of the sources of the observed problems.
They describe also how the use of phylogenetic algebraic geometry can help in
estimating to what extent the probability distribution at the leaves of the phylo-
genetic tree obtained from the SSWL data can be considered reliable, by testing it
on phylogenetic trees established by other forms of linguistic analysis. They remark
that after restricting to smaller language subfamilies and considering only those
SSWL parameters that are fully mapped for the whole subfamily, the SSWL data
match extremely well-reliable phylogenetic trees, according to the evaluation of
phylogenetic invariants. This is a promising sign for the use of SSWL data for
linguistic phylogenetics, which was their first motivation.
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Where We Stand Today

Joseph Kouneiher

1 Hilbert and the Foundations of Mathematics and Physics

In his work of 1918, Hermann Weyl extended the general theory of relativity, which
Albert Einstein had set forth in the years 1915–1916, to unify the twofield phenomena
known at this time, namely those described by electromagnetic and gravitational
fields. But more was at stake. At the beginning of the paper in which Weyl worked
out the mathematical foundations of the theory, he observed that:

According to this theory, everything real, that is in the world, is a manifestation of the
world metric; the physical concepts are no different from the geometrical ones. The only
difference that exists between geometry and physics is, that geometry establishes, in general,
what is contained in the nature of the metrical concepts, whereas it is the task of physics
to determine the law and explore its consequences, according to which the real world is
characterized among all the geometrically possible four-dimensional metric spaces. [124]

This work sounds like an echo of a work undertaken by Hilbert many years earlier.1

Indeed, when Hilbert started studying the analysis of integral equations, he sought
to achieve Poincaré’s program unifying different aspects of mathematical analysis
and physics. For him, the aim was to expose and simplify the known results, just like
“formal” physicians such as Dirac, who sought to give physics a coherent mathemat-
ical basis. It was on this occasion that he developed the theory of quadratic forms to
an infinite number of variables, work that would later lead to the birth of “Hilbert
spaces” (and to spectral theory), and that consists in interpreting equations as terms
of linear transformation of this space. He permitted, via his theory of spaces, a new

1See Corry’s contribution in this volume.
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2 J. Kouneiher

“geometrization” of physics, thanks to the invention of a new geometry that J. Von
Neumann and F. Riesz axiomatized, and that became a powerful tool inmathematical
physics.
In fact, Hilbert’s approach concerning unification in physics can be seen as a problem
of finding a consistent and satisfactory mathematical unification of the gravitational
and electromagnetic fields, be it through modified field equations, a modification of
the space-time geometry, or by increasing the number of space-time dimensions.
Hilbert’s view of physics from a mathematician’s perspective becomes quite explicit
in remarks hemade regarding the relationship between physics and geometry. Hilbert
regarded geometry as a genuine branch of mathematics, so it had become mathema-
tized, arithmetized and eventually axiomatized [59], and was no longer subject to
experimental examination. However, originally, geometry was a natural science.
Hilbert’swork on the foundations ofmathematics and physics has its roots in hiswork
on geometry from the 1890s, culminating in his influential textbook Foundations
of Geometry (1899). Hilbert believed that the properly rigorous way to develop
any scientific subject required an axiomatic approach. In providing an axiomatic
treatment, the theory would be developed independent of any need for intuition, and
it would facilitate an analysis of the logical relationships between the basic concepts
and the axioms.

Thus, as early as 1894, in a lecture on geometry that he gavewhile still in Königsberg,
Hilbert said:

Geometry is a science that essentially has developed to such a state that all its facts may be
derived by logical deduction from previous ones [58, 108].

Later in this lecture, in the course of discussing the axiomatic foundations of geom-
etry, he presented the axiom of parallels and discussed the alternatives of Euclidean,
hyperbolic and parabolic geometries. In this context, he remarked:

Now, all other sciences are also to be treated following the model of geometry, first of all
mechanics, but then optics and electricity theory as well [58, 108].

According to Hilbert, physics was but a four-dimensional pseudo-geometry,
whose metric was connected, via his theory, to electromagnetic quantities, i.e., to
matter. And with this knowledge, an old geometric problem could now be solved:
whether and in what sense Euclidean geometry - about which we only know from
mathematics that it is a logically consistent structure - is also valid in reality. After
discussing Gauss’s inability to verify empirically a non-Euclidean physics through
angle measurement in a large triangle, Hilbert talked about how the physics of Ein-
stein’s general theory of relativity had a totally different relationship to geometry.
The new physics started neither with Euclidean nor with any other fixed geometry
in order to deduce the actual laws of physics. Instead, general relativity yielded, in
one blow, the laws of geometry and physics through one and the same Hamiltonian
principle, i.e., through the fundamental equations of his theory. Hilbert’s conclusion
was:
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Euclidean geometry is an action-at-a-distance law alien to modem physics: while the theory
of relativity rejects Euclidean geometry as a general presupposition for physics, it teaches
furthermore that geometry and physics are of a similar kind and rest, as one science (Wis-
senschaft), on a common foundation.

Weyl commented Hilbert’s work on general relativity and unified field theories,
noting that: “Hopes in theHilbert circle ran high at that time: the dreamof a universal
law accounting both for the structure of both the cosmos as a whole and of all the
atomic nuclei seemed near fulfillment.”
So, the idea of unification forWeyl and his contemporarieswas understood notmerely
as a synthesis of the electromagnetic and gravitational fields, but also as a unification
of geometry and physics and as the quest for a universal world law accounting for
the structure of both cosmos and matter.
Later in themid-1940sWeyl felt that it was insufficient to unite electromagnetism and
gravitation, and that quantum and nuclear phenomena had to be taken into account as
well. By focusing on the unification of the physical fields known at that time, Weyl
continued the re-definition of the aims of the unification project that he had begun in
the late 1920s with the advent of the new quantum mechanics. As the above passage
from the Hilbert obituary shows, in the mid-1940s Weyl would not even discuss the
union between geometry and physics that seemed so attractive in the 1910s.

Recall that themathematical scene inGottingen2 in thefirst decade of the twentieth
centurywas dominated by Felix Klein (1849–1925), DavidHilbert (1862–1943), and
Hermann Minkowski (1864–1909). Klein described the spirit that dominated at that
time :

Speaking, as I do, under the influence of our Göttingen traditions, and dominated somewhat,
by the great name of Gauss, I may be pardoned if I characterize the tendency outlined in these
remarks as a return to the general Gaussian program. A distinction between the present and
the earlier period evidently lies in this: that what was formerly begun by a single mastermind,
we now must seek to accomplish through united efforts and cooperation. [65]

As we know, many contemporary mathematicians envisaged a unified science
at the time. Felix Klein’s History of the Development of Mathematics in the 19th
century3, Kaluza, Einstein, Weyl and others are examples of this [109].

Note that Hilbert’s perspective on the mathematical sciences as an integrated
whole can be seen as an attempts to come to grips with the philosophical implica-
tions of an ever-increasing specialization in the natural sciences. So, by invoking
the axiomatic method (im Sinne der axiomatischen Methode’), Hilbert was calling
attention to a specifically epistemological method of investigation of mathematical

2In the early twentieth century, Göttingen was the location of an exceptionally vibrant community
withinwhich a belief in themathematical comprehensibility of naturewaswidespread and facilitated
very free exchanges between mathematicians.
3This can also be seen as a most interesting attempt to understand the inner organic unity of the
corpus of mathematical knowledge [66].
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theories (including those of physics) that he pioneered, and which he saw as being
closely tied to the nature of thought itself [10]. Therefore, this term implicates more
than a merely typical mathematical concern with the rigorous, explicit statement
of a theory; it also connotes a specifically logical and epistemological method of
investigation for deepening the foundations of the theory.
In Hilbert’s mind, this is tributary to how cognition arises from the distinct sources
of intuition, concepts and ideas. Therefore, the axiomatic method is conceived as
a logical analysis that begins with certain facts’ presented for our finite intuition
or experience. Indeed, both pure mathematics and natural science alike begin with
facts’, i.e., singular judgments about something already given to us in representation
(in der Vorstellung): “certain extra-logical discrete objects that are intuitively present
as an immediate experience prior to all thinking”.

In his 1930 paper entitled Knowledge of Nature and Logic’, Hilbert commented
on how modern science had led to the judgment that Kant had far overestimated
the role and extent of a priori elements in cognition, and carried on to endorse the
conception of such elements as nothing more and nothing less than a basic point
of view (Grundeinstellung) or expression of certain unavoidable preconditions of
thinking and experience’. He concluded that what remains of Kant’s synthetic a
priori is just this a priori intuitive point of view’ that is presupposed in all theoretical
concept construction in mathematics and physics. But Hilbert stressed that this was
in full agreement with the basic tendency of Kantian epistemology:

Thus, the most general and fundamental idea of Kantian epistemology retains its signifi-
cance: namely, the philosophical problem of determining that a priori intuitive point of view
(jene anschauliche Einstellung a priori) and thereby of investigating the conditions of the
possibility of all conceptual knowledge and of all experience.

So, through this citation, we discover Hilbert’s conviction of the existence of a third
source of cognition (Erkenntnisquelle) outside of deduction and experience, what he
called the “a priori intuitive viewpoint”. Hilbert describes this intuitive viewpoint
(anschauliche Einstellung) as an a priori insight . . . that the applicability of the
mathematical way of reflection over the objects of perception is an essential condition
for the possibility of an exact knowledge of nature’, an epistemological position,
Hilbert goes on to state, that seems to me to be certain’ [10, 37].

As an observation on Hilbert’s program on the axiomatization of physics, Einstein4

wrote:

Our experience hitherto justifies us in believing that nature is the realization of the simplest
conceivable mathematical ideas. I am convinced that we can discover by means of pure
mathematical constructions the concepts and the laws connecting them with each other,
which furnish the key to the understanding of natural phenomena. Experience may suggest
the appropriate mathematical concepts, but they most certainly cannot be deduced from it.
Experience remains, of course, the sole criterion of the physical utility of a mathematical
construction. But the creative principle resides in mathematics. In a certain sense, therefore,
I hold it true that pure thought can grasp reality, as the ancients dreamed [50].

4For the relation between Hilbert and Einstein, see Stachel and Kouneiher’s contribution in this
volume.
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ForEinstein, the problemoffinding amathematical representation thatwould provide
a unification of the gravitational and electromagnetic fields wasmore than just a tech-
nical problem. This aspect of his work is expressed most convincingly in Einstein’s
own account of his lifelong research concerns, as given in his 1949 Autobiographical
Notes [49]. Einstein, in his later work, followed a path that is not at all dissimilar to
Hilbert’s. Hilbert himself perceived Einstein as sharing his concern. Both Einstein
and Hilbert belong to a tradition that attempts to integrate our human knowledge and
to perceive an inner unity in science.

2 The Rise of Mathematical-Physics

A real interaction between mathematics and physics began to open up in the nine-
teenth century5. For example, in volume 2 of Nature, from 1870, we read of the
following challenge from the pure mathematician Sylvester [86, 119]:

What is wanting (like a fourth sphere resting on three others in contact) to build up the ideal
pyramid is a discourse on the relation of the two branches (mathematics and physics) to,
and their action and reaction upon, one another - a magnificent theme with which it is to be
hoped that some future president of Section A will crown the edifice, and make the tetrology
…complete.

James Clerk Maxwell, as president of the British Association, took up the challenge
in a very interesting address in [83]. He modestly recommended his somewhat-
neglected dynamical theory of the electromagnetic field to the mathematical com-
munity. According to [47], not many mathematicians paid attention, constituting one
of the greatest Missed Opportunities of all time. Hertz commented on Maxwell’s
approach:

Maxwell’s theory consists of Maxwell’s equations. One cannot escape the feeling that these
equations have an existence and intelligence of their own, that they are wiser than we are,
wiser even than their discoverers, that we get more out of them than was originally put into
them.

In his address to the very first International Congress of Mathematicians in Zürich
in 1897, Henri Poincaré chose as his topic Sur les rapports de l’analyse pure et de la
physique mathématique, (On the relation of pure analysis to mathematical physics).
He was particularly impressed by Maxwell’s achievement:

How was this triumph attained?

Maxwell succeeded because he had become imbuedwith the idea ofmathematical symmetry.
Would he have triumphed so well had others before him not explored this symmetry for its
own sake? […] Analysis was perhaps not among Maxwell’s skills, but to him, it would have
only been cumbersome and useless baggage. On the contrary, he was gifted with a profound
sense of mathematical analogy. This is why he produced good mathematical physics. [96].

5For the history of the mathematization and geometrization of physics and the role of Euclid, Aris-
totle, Archimedes and the Greek philosophers, followed by Gallileo, Descartes, Newton, Leibniz,
and, even later, Grassmann, Hamilton and Elie Cartan, see [73].
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It is this realm of fundamental physics that is intimately intertwined with mathemati-
cal research at the frontiers ofmathematical study. The relation betweenmathematics
and physics is one with a long tradition going back thousands of years. This has been
true from the beginning of modern physics, when Galileo first enunciated the propo-
sition that the natural language of physics was mathematics. Newton, one of the
greatest mathematicians of his day, invented the calculus of infinitesimals to calcu-
late planetary orbits, as well as to solve pure mathematical problems. His universal
law of gravitation explained everything from the fall of an apple to the orbits of the
planets.

In the following centuries, there was little distinction between theoretical physics
andmathematics, with many of the greatest contributors - Laplace, Legendre, Hamil-
ton, Gauss, Fourier - being regarded as physicists and mathematicians at the same
time.
The sophistication of Maxwell’s equations in the nineteenth century in including the
behaviour of electromagnetism induced an analogue process in the twentieth century
through Einstein’s theory of special relativity and then of general relativity. Einstein’s
choice to privilege symmetry over the laws of mechanics naturally implies the refor-
mulation of gravitation and electromagnetism as field theories in four-dimensional
space-time. This fusion of geometry and classical physics provided a strong stimulus
to mathematicians in the field of differential geometry.
However, the twentieth century has witnessed two revolutions in physics and the
completion of a theory of ordinary matter and its interactions. Once again, we have
called on mathematics to supply the tools and framework for this task. When Ein-
stein created general relativity, the dynamical theory of space and time, in 1915, the
necessary tools of differential geometry were available. They had been created by
Gauss and Riemann in the previous century. Riemannian geometry thus became a
central topic of geometry.
By the 1920s, it had been realized that atomic physics in the form of quantum me-
chanics, and the use of radically new concepts, such as the linear superposition of
states and the uncertainty principle, required an entirely new mathematical frame-
work. Physics appeared to be diverging from classical mathematics and the hope
of capturing the fundamental physical laws in terms of deep and elegant mathe-
matics faded away. The development of quantum mechanics built on understanding
of Hilbert spaces influenced the development of functional analysis. Early particle
physics drew heavily on the theory of continuous groups, which itself was partly
motivated by the desire to understand the spatial symmetry of crystalline structures.
Nonetheless, during the middle part of that century, mathematics and fundamental
physics developed in very different directions, with little significant interaction be-
tween them. This was due, in part, to an atmosphere of increased abstraction in the
mathematics community, aswell as an insistence on rigid formal rigor, as exemplified
by the famous Bourbaki school.
However, much of the reason for this separation was due to developments in physics.
First, the early development of quantum mechanics and the early applications of
quantummechanics to elucidating the structure ofmatter required littlemathematical
sophistication. During the first decades after World War II, the vistas of particle
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physics rapidly expanded. These times were dominated by experimental surprises,
and theoretical model building required little more than traditional mathematical
tools.

3 Gauges Theories, Dualities and Fiber bundles

The advent of the Yang-Mills equations in 1955 showed that particle physics could
be treated with the same kind of geometry as Maxwell’s theory [132], but with quan-
tum mechanics playing a dominant role. Later, in the 1970s, it became clear that
these non-Abelian gauge theories were indeed at the heart of the standard model of
particle physics, which describes the known particles and their interactions within
the context of quantum field theory. These non-Abelian gauge theories of strong,
weak, and electromagnetic interactions are now universally accepted as yielding
a complete description of all the interactions of matter at energies and distances
that are experimentally accessible at present. This development was surely one of
the most remarkable accomplishments of twentieth century science. Attention has
more recently turned to even more ambitious attempts to construct unified theories
of all the interactions of matter, together with gravity. In the development of these
gauge theories, it has happened that many significant physical problems have led
to equally significant concepts in modem mathematics.6 Many of these concepts,
in fact, were invented independently by physicists and mathematicians. It is a re-
markable achievement that all the building blocks of this theory can be formulated
in terms of geometrical concepts such as vector bundles,7 connections, curvatures,
covariant derivatives and spinors. This combination of geometrical field theory with
quantummechanicsworkedwell for the structure ofmatter, but seemed to face a brick
wall when confronted with general relativity and gravitation (for the next sections
see [20, 93]).

3.1 Connections in a Fiber Bundle (Elie Cartan)

A notion that includes both Klein’s homogeneous spaces and Riemann’s local ge-
ometry is Cartan’s generalized spaces (espaces generalisés). In modern terms, this

6For more details, see Masson et al’s contribution in this volume.
7Paul Dirac in 1931 discussed the possible existence of elementary magnetic charges-magnetic
monopoles [41]. He showed that in quantum mechanics, such magnetic monopoles made sense if,
and only if, the product of their charge, g, with the electric charge of the electron, e, was an integer
multiple of Planck’s constant �, precisely: ge = n�. This was very exciting, since it meant that as
long as there existed one magnetic monopole in the universe, all charges had to be quantized in units
of �/g. In mathematical terms, Dirac had discovered an integer that characterized the topological
classification of vector bundles, mathematical constructs that were being invented at about the same
time by mathematicians. These concepts have come to play a role of increasing importance in
modern gauge theories.



8 J. Kouneiher

is called “a connection in a fiber bundle.” It is a straightforward generalization of
the Levi-Civita parallelism, which is a connection in the tangent bundle of a Rie-
mannian manifold. In general, we have a fiber bundle π : E −→ M , whose fibers
π−1(x), x ∈ M are homogeneous spaces acted upon by a Lie groupG. A connection
is an infinitesimal transport of the fibers compatible with the group action by G.

In the case of a complex vector bundle, the fibers are complex vector spaces
Cn of dimension n and G = GL(n; C) [18]. The importance of complex numbers
in geometry has a profound implication. It is well organized and complete. One
manifestation is the simple behaviour of the group, GL(n; C): its maximal compact
subgroupU (n) has no torsion and has, as aWeyl group the group of all permutations
on n letters.

We shall call a frame an ordered set of linearly independent vectors e1, . . . , en ∈
π−1(x), x ∈ M . In a neighborhoodU , where a frame field e1(x), . . . , en(x), x ∈ U ,
is defined, a connection is given by the infinitesimal displacement

Deα =
∑

ωβ
αeβ, 1 ≤ α, β ≤ q, (1)

where ωβ
α are linear differential forms inU . We call ωβ

α the connection forms and
the matrix

ω = (ωβ
α) (2)

the connection matrix. Under a change of the frame field

e′
α =

∑
aβ

α eβ , A = (aβ
α ), (3)

the connection matrix is changed as follows:

ω′A = d A + Aω . (4)

We introduce the curvature matrix

� = dω − ω ∧ ω , (5)

which is a matrix of exterior two-forms. Through exterior differentiation of (4),
we get

�′ = A�A−1, (6)

It follows that the exterior polynomial

det

(
I + i

2π
�

)
= 1 + c1(�) + · · · + cn(�), (7)

in which cn(�) is a 2α-form, is independent of the choice of the frame field, and
is hence globally defined in M. Moreover, each cα is closed, i.e.,
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dcα = 0. (8)

The form cα(�) has been called the αth Chern form of the connection, and its
cohomology class [cα(�)], in the sense of de Rham cohomology, is an element of
the cohomology group H 2α(M; Z) and is called the αth Chern class of the bundle
E . These characteristic classes are the simplest and most fundamental global in-
variants of a complex vector bundle. They have the advantage of possessing a local
representation, by curvature.

As in the Gauss-Bonnet formula, such a representation is of great importance,
because the forms cα(�) themselves have a geometrical significance. Moreover, let
π ′ : P −→ M be the bundle of frames of the complex vector bundle. Then, the
pull-back π ′∗cα becomes a derived form, i.e.,

π ′∗cα = dT cα , (9)

where T cα , a form of degree 2α − 1 in P , is uniquely determined by certain
properties. This operation is called transgression, and T cα have been called the
Chern-Simons forms [17]. These forms have played a role in three-dimensional
topology and in the works of E. Witten on quantum field theory [128].

This theory can be developed for any fiber bundle (see [19]). The above provides
the geometrical basis of gauge field theory in physics. Here M is a four-dimensional
Lorentzian manifold, so that the Hodge ∗-operator is defined, and we define the
codifferential

δ = ∗d∗, (10)

There is a discrepancy of terminology and notation, as given by the following
table:

Mathematics Physics
Connection ω Gauge potential A
Curvature � Strength F

Maxwell’s theory is based on a U (1)-bundle over M , and his field equations can
be written as

d A = F, δF = J, (11)

where J is the current vector. Actually, Maxwell wrote the first equation as

dF = 0, (12)

which is a consequence. For most applications, (12) is sufficient. But a critical
studyof an experiment proposedbyBohmandAharanov andperformedbyChambers
shows that (11) are the correct equations [131]. A generalization of (11) to an SU (2)
bundle over M gives the Yang-Mills equations



10 J. Kouneiher

DA = F, δF = J. (13)

It is indeed remarkable that developments in geometry have been consistently
parallel to those in physics.

The following quote from Raoul Bott captures the spirit of the time8:

Although we still often do not understand each other, the push and pull relationship of our
two points of view has never been stronger and has invigorated both of us. Certainly in math-
ematics, the physically inspired aspects of the Yang-Mills theory has had a profound effect
on our understanding of the structure of 4-manifolds, and I also think we mathematicians
are only now learning to appreciate the rich mathematical structure of the Dirac sea - and
indeed of the whole Fermion-inspired world of the physicists, as well as their mystical belief
in supersymmetry. And on the other hand, the most modern achievements of mathematics
- from cobordism to index theory and K theory - have by now made their way into some
aspects of present day physics - I think to stay. [13].

We will illustrate this exchange between physics and mathematics described by Bott
starting with the case of the three-dimensional topology [8].

3.2 The Dawn of Mathematical Physics

The prime example of a topological problem is that of knots in three-dimensional
space,9 In 1984, the world of knot theory underwent a remarkable new development
when Vaughan Jones discovered a polynomial knot invariant (now named after him)
thatwas different from theAlexander polynomial [64]. Crucially, it was chiral, that is,
it could distinguish knots from their mirror images, which the Alexander polynomial
could not. It soon emerged that this new invariant was part of a grand family of
invariants based on Lie algebras and their representations. Shortly afterwards,Witten
showed how to interpret the Jones polynomial in terms of a quantum field theory in
three dimensions [126].
In fact, this relation between knot invariants and particles goes to the very beginning
of relativistic quantum field theory as developed by Feynman and others in the 1940s.
The basic idea is that, if we think of a classical particle moving in space-time, it will
move in the direction of increasing time. However, within quantum theory, the rules
are more flexible. Now, a particle is allowed to travel back in time. Such a particle
going backwards in time can be interpreted as an anti-particle moving forwards in
time. Once it is allowed to turn around, the trajectory of a particle can form, as it

8Supersymmetry, the link between bosons and fermions, is a closely related concept from physics
that has also influenced differential geometry. As first noted by Edward Witten, supersymmetry
applied within quantum mechanics is an elegant way to derive the basic principles of Morse theory
[125]. Another application is in the development of hyper-Kähler geometry - the curved manifes-
tation of Hamilton’s quaternions. Although the definition has been in the differential-geometric
literature since the 1950s, it was 30 years later, as a result of the infiltration of ideas from the
supersymmetric sigma model, that a mechanism for constructing good examples was found.
9Henceforth in this section, we follow [8].
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were, a complicated knot in space-time. The rules of quantum theory will associate,
to each such trajectory a probability that describes the likelihood of this process
actually taking place.
Relating quantum field theory to knot invariants along these lines had many advan-
tages. First, it was fitted into a general framework familiar to physicists. Second,
it was not restricted to knots in three-dimensional Euclidean space and could be
defined on general three-dimensional manifolds. One could even dispense with the
knot and get an invariant of a closed three-dimensional manifold. Such topological
invariants are now called quantum invariants and have been extensively studied. The
chirality of these invariants is then closely related to the chirality of Yang and Lee
in weak-interaction physics. This example of quantum knot invariants makes clear
that physics bridges the realms of geometry and algebra in a natural way. Indeed,
quantization can be seen as taking a geometric object, say a curve in a Calabi -Yau
space or a knot in a three-manifold, and associating an algebraic object with it, in
these examples, the complex number that represents the probability amplitude of the
corresponding quantum process.
The revitalization of the connections between mathematics and physics is especially
true in the realm of elementary particle physics, leading to many hybrid subjects,
such as topological quantumfield theory, quantum cohomology and quantum groups,
which are now central topics of research in both mathematics and physics.
For instance, modern physical constructions such as quantum field theory and string
theory, which are very far removed from everyday experience, have proven to be a
similarly fertile setting for mathematical problems. Indeed, in many ways, quantum
theory has turned out to be an even more effective framework for mathematics than
classical physics. Particles and strings, fields and symmetries, they all have a natural
role to play in mathematics.
This influence manifests itself in two ways. In some sense, the easier one is for the
mathematician to be presented with a clearly stated conjecture or problem. One then
attempts a development of current conventional techniques to provide a rigorous so-
lution. The construction of instantons in the 1970s was an example of this: a problem
derived from quantum physics, but refined to one in conventional, but modern, dif-
ferential geometry. The mathematics that developed from it, and its new viewpoints,
was the work of Simon Donaldson [45].
Indeed, the Methods developed in quantum gauge theories, using so-called “instan-
tons,” were a sources of inspiration for Donaldson [44], Taubes, and Floer [51] in
deducing some deep and astounding properties of the geometry of three - and four-
dimensional spaces. Witten has reinterpreted Donaldson’s theory in physical terms,
using it to speculate on a new phase of quantum gravity [129].
In 1983, Simon Donaldson applied ideas from physics to make a spectacular break-
through in our understanding of four-dimensional geometry. He showed that there
were some very subtle invariants in four dimensions, not present in any other di-
mension, which were preserved under smooth deformation, but not under general
continuous deformation [43, 44]. Indeed, dimension four is special not only for
physics, in which it represents space-time, but also for geometry, in which there are
unique phenomena associated with this particular dimension.
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Donaldson’s work10 originated in physics in the same way that the Hodge theory
of harmonic forms had been inspired by Maxwell’s equations, but this connection
appeared to be rather formal. More importantly, within Yang-Mills theory, the equa-
tions become nonlinear. Instead of studying the solutions themselves, Donaldson put
in the so-called moduli space that parametrizes the family of solutions in a central
position. In fact, one could regard the gauge-theoretic approach to four-dimensional
differential topology as replacing the points of the four-manifold with nonlinear
instanton solutions of the Yang-Mills equations.
Again, it was Witten who showed that Donaldson’s invariants could be interpreted
in terms of a quantum field theory and that this would have profound consequences.
Moreover, this field theory was a close cousin of the standard theories used by
particle physicists, except that it had a twist’ that produced topological invariants,
not dependent on the intricate details of the underlying geometry of space-time.
The interpretation by Witten11 allowed Seiberg and Witten12 to show that the cor-
responding physical theory could be solved in terms of a much simpler structure.
Yang-Mills theory is fundamentally based on a choice of a non-Abelian Lie group,
usually taken to be the group SU (2). The non-commutativity of this symmetry group
leads to the nonlinearities of the associated partial differential equations. However,
in physics, it was known that in quantum theories, these non-Abelian symmetries
often manifest themselves only at very short distance scales. At large distances, the
symmetry can be broken into amuch simpler Abelian group. For example, in the case

10Donaldson’s work involved a melting pot of ideas, not so much from physics, but from the
mathematical areas of nonlinear analysis of partial differential equations, differential and algebraic
geometry, and topology. Nevertheless, the whole idea of studying a moduli space in this context- a
space of connections up to gauge equivalence - had its essential origin in physics. In fact, Donaldson
found his invariants by studying special solutions of the Yang-Mills equations, which had already
been introduced by physicists under the name of instantons’. These solutions have the property that
they are essentially localized to a small region in space-time, thereby describing an approximately
instantaneous process. Instantons had a family resemblance to the solitons’ or solitary waves first
observed by John Scott Russell in the early nineteenth century.
11Remarkably, Donaldson theory is viewed as perturbative. The distinct, non-perturbative picture
of the same theory yields Seiberg-Witten theory. The last one describes, in a different way, the same
invariants as Donaldson did, they are two limiting forms of the same quantum field theory.
The point here is that the perturbative/non-perturbative physics view allowed for he resolution
of some old problems. In another setting, that of Chern-Simons theory applied to the theory of
knots and links, the perturbative view gives the Vassiliev invariants and the non-perturbative the
Jones-Witten polynomial invariants.
12Seiberg and Witten were able to make this physical intuition precise for the class of twisted
supersymmetric quantumfield theories relevant for theDonaldson invariants [67, 112]. The resulting
Seiberg-Witten invariants were based on a U (1) gauge field interacting nonlinearly with a spinor
field [127].
These invariants again involved characters familiar to the mathematician, Dirac operators and Spin
structures, and this area was the focus of intense research activity in the 1990s. It seemed as if
results that were difficult to prove using Donaldson’s theory were easier here, and vice versa. The
pay-off in mathematics from the appeal to the physicists”s intuition was clear: one had a new tool
for studying four-dimensional manifolds.
On the other hand, to establish that really there was a link between the two theories in conventional
terms proved to be an enormous task, one that was only recently accomplished.
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of SU (2), only the circle group U (1) of electromagnetism would appear together,
possibly with some charged matter particles.
The second mode of influence challenges mathematicians much more seriously,
since it involves developing a sense of intuitive understanding parallel to that of
every physicist, for whom this has been second nature since graduate school. It
has spurred new ways of thinking in pure mathematics. Clearly, this approach is a
long-term programwithmany ramifications, somewhat reminiscent of Hilbert’s sixth
problem: the axiomatization of all branches of science, in which mathematics plays
an important part.
One example comes from enumerative geometry, a particularly active field in the
nineteenth century.13 In classical geometry, many problems concern counting the
number of solutions. A slightly more complicated problem is to count the number of
curves in the plane that satisfy certain constraints. One such problem for curves of
degree d, which are rational, is to ask how many such curves go through n general
points. The general formula was not known to classical geometers, and only emerged
from physics! Moreover, the methods from physics are powerful enough to deal with
more general curves, and also with more general problems of the same type [69,
107].

3.3 Algebraic Geometry, Cohomology and Strings theories

Algebraic geometry is a subject that somehow connects and unifies several aspects
of mathematics, including, obviously, algebra and geometry, but also number theory,
topology, and, recently, string theory in physics, etc. The power of the field arises
from a point of view that was developed in the 1960s in Paris, by the group led by
Alexandre Grothendieck.14 The power comes from rather heavy formal and technical

13In themid-nineteenth century Riemann introduced analyticalmethods into the algebraic geometry
of curves. These were sometimes proved by appeal to physical principles such as the Dirichlet
principle, a technique motivated by the physical tenet that nature works by minimizing actions and
energy.
Yet the whole apparatus of differentials and theta functions enabled remarkable results to be proved
or rendered obvious; special facts like the existence of precisely 28 bitangents to a quartic curve
or 120 tritangent planes to a genus four curve are not so far removed in spirit from the remarkable
count of rational curves on the quintic threefold by Candelas et al. [15], which is the most startling
application of the string theorists’s mirror symmetry in algebraic geometry. If one looks at the
journals of the time, one will also see a very rapid succession of applications of these methods
before a settling down at the end of the century to a mixture of techniques.
14Just prior to Grothendieck’s entry into the subject, Weil had gotten important results in number
theory through algebro-geometric arguments, and pointed the way to far more, but some of his
methods went beyond existing rigorous foundations. He aimed to supply new foundations adequate
to his ideas. Around the same time, Zariski and van der Waerden were also generalizing the foun-
dations of algebraic geometry, and many others were introducing various innovations. In particular,
the “Weil conjectures” suggested that topological methods of cohomology applied to algebraic ge-
ometry might have huge consequences for number theory – but neither Weil nor anyone else in,
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machinery, in which it is easy to lose sight of the intuitive nature of the objects under
consideration [122].
Grothendieck gave two simplifications.15 The first concerned the Cohomology,
which, in 1954, had numerous alternative forms in topology, geometry and anal-
ysis. It could be defined by covering spaces, or differential forms, or Cech covers, or
simplicial decomposition, andmuchmore. Grothendieck introduced the now-current
ideas of the Abelian category and derived functor so that essentially all these coho-
mology theories used one simple kind of resolution: the injective. The second is the
introduction of schemes. By the mid-twentieth century, leading algebraic geometers
all saw that algebraic geometry needed a notion of algebraic space more general than
spaces defined by polynomial equations over the complex numbers. Many people
gave examples, led by Weil and, notably, Serre. In these, algebraic spaces could
have coordinate functions much more general than polynomials with complex co-
efficients. They all stayed fairly close to taking coordinates in fields, generally, in
algebraically closed fields. This was a serious obstacle to Weil’s hopes for algebraic
geometry being used as a tool in number theory, since the integers do not form a field
at all. The rational numbers form a field, but it is as far from algebraically closed
as it could be– if an integer polynomial with lead coefficient 1 has no integer roots,
then it has no rational roots either, but, of course it has as many complex roots as its
degree.
Grothendieck defined schemes so that every ring is the coordinate ring of a scheme.
Rings that seem to be purely algebraic abstract entities still have geometric meaning
in this theory. Some schemes by themselves have little apparent geometric sense,
but they have eminently geometric relations to one another [39]. You can define
schemes without knowing what polynomials are, let alone knowing what “alge-
braically closed” means. In lightly over-simplified terms, you only need to know the
commutative, associative and distributive laws to learn what a commutative ring is,
and thus define a scheme.

Another essential motivation for algebraic geometry is to study the manifolds. Real
manifolds are things that locally look like bits of real n-space, and they are glued
together to make interesting shapes. There is already some subtlety here - when you
glue things together, you have to specify what kind of gluing is allowed. For example,
if the transition functions are required to be differentiable, then you get the notion
of a differentiable manifold. A great example of a manifold is a submanifold of R

n

(consider a picture of a torus). In fact, any compact manifold can be described in
such a way. You could even make this your definition, and without worrying about
gluing.
This is a good way to think about manifolds, but not the best way. There is something
arbitrary and inessential about definingmanifolds in this way.Much cleaner is the no-
tion of an abstract manifold, which is the current definition used by the mathematical
community. There is an even more sophisticated way of thinking about manifolds.

say, 1954 could see how to actually do that. Serre believed more strongly than Weil himself did that
such a cohomology could actually be created.
15 For more details, see Colin MacLarty’s contribution and [79].
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A differentiable manifold is obviously a topological space, but it is a little bit more.
There is a very clever way of summarizing what additional information there is, ba-
sically by declaring what functions on this topological space are differentiable. The
right notion is that of a sheaf. It is true, but not obvious, that this ring of functions that
we are declaring to be differentiable determines the differentiable manifold structure.

Very roughly, algebraic geometry, at least in its geometric guise, is the kind of ge-
ometry you can describe with polynomials. So, you are allowed to talk about things
like y2 = x3 + x , but not y = sinx . So, some of the fundamental geometric objects
under consideration are things in n-space cut out by polynomials. Depending on how
you define them, they are called affine varieties or affine schemes. They are the ana-
logues of the patches on a manifold. Then, you can glue these things together, using
things that you can describe with polynomials, to obtain more general varieties and
schemes. Thus, we’ll have these algebraic objects that we call varieties or schemes,
and we can talk about maps between them, and things like that.
In comparison with manifold theory, we’ve really restricted ourselves by restricting
ourselves to the use of polynomials. But on the other hand, we have gained a huge
amount too.
First of all, we can now talk about things that aren’t smooth (that are singular), and
we can work with these things. Algebraic geometry provides particularly powerful
tools for dealing with singular objects. (One thing we’ll have to do is to define what
we mean by smooth and singular!). Also, we need not work over the real or complex
numbers, so we can talk about arithmetic questions, such as: what are the rational
points on y2 = x3 + x2 (Here, we work with the field Q.) More generally, the recipe
by which we make geometric objects out of things to do with polynomials can be
drastically generalize, and we can make a geometric object out of rings. This ends
up being surprisingly useful. All sorts of old facts in algebra can be interpreted
geometrically, and indeed, progress in the field of commutative algebra these days
usually requires a strong geometric background.

An richer example is the counting of rational curves not on the plane, but on a quintic
hypersurface X given by the equation image

x51 + x52 + x53 + x54 + x55 = 0

in projective four-space. This equation can be seen to describe a manifold of three
complex dimensions, or six real dimensions. The quintic X plays an important role
in string theory. It is an example of a Calabi-Yau space, a special class of complex
manifolds that allow for a solution of the Einstein equations of gravity in empty
space. In string theory X can be used to compactify the 10-dimensional space-time
down to the four dimensions of physics.

The idea is that there is a formulation of string theory that is able to capture the
topology of string configurations [40]. Roughly, the idea is as follows: we introduce
fermions fields θμ considered as spinors on the two-dimensional world-sheet. They
have two components θ

μ

L , θ
μ

R , with the local action
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∫
d2zgμν(x)

(
θ

μ

L

Dθν
L

∂ z̄
+ θ

μ

R

Dθν
R

∂z

)
, (14)

We assume the target space X is (almost) complex, so we can use holomorphic
local coordinate xi , x̄ īwith a similar decomposition for the fermions. We consider
the appropriate higher order terms to obtain a sigma model with N = (2, 2) super-
symmetry.

To produce the topological string, we change the spins of the fermionic fields. Or
there are two inequivalent manners but which to do so, and we obtain two models
A and B. However, the nature of the topological twisting determines wether if the
path-integral of the sigma model localizes to a finite-dimensional space.

The A-model corresponds to the holomorphic maps

∂xi

∂ z̄
= 0.

The path-integral is reduced over all maps from � into M to a finite-dimensional
integral over the moduli space M of holomorphic maps f : � −→ M or, more
precisely, the moduli space of paris (�, f ), where � is a Riemann surface. The
A-model depends only on the Kähler class ω ∈ H 2(M) of the manifold M .

Now, Quantum cohomology is a deformation of the De Rham cohomology ring
H∗(M)of amanifold.Classically, this ring captures the intersectionproperties of sub-
manifolds. More precisely, if we have three cohomology classes, α, β, γ ∈ H∗(M),
which are Poincaré dual to three subvarieties A, B,C ⊂ M , the quantity

I (α, β, γ ) =
∫

M
α ∧ β ∧ γ (15)

computes the intersection of the three classes, A, B and C , that is, it counts (with
signs) the number of points in A ∩ B ∩ C .

In the case of the A-model where M is kähler, or at least a symplectic manifold
with symplectic form ω, the stringy intersection product is related to the three-string
vertex

Iq(α, β, γ ) =
∑

d

qd
∫

Mapsd

α ∧ β ∧ γ , (16)

where

qd = exp

[−1

α′

∫

S2
ω

]
= e−(d.[ω])/α′

, (17)

Remark that in Eq. (16), we integrate the differential forms over the moduli space
of a pseudo-holomorphicmap of degree d of a sphere into themanifoldM . In the limit
α′ → 0, only the constant maps contribute, and we recover the classical definition of
the intersection product bymeans of an integral over the space M . Geometrically, the
quantum intersection counts the pseudo-holomorphic spheres inside M that intersect



Where We Stand Today 17

each of the three cycles A, B,C , and therefore there is no need for these cycles to
intersect. It is enough to have a pseudo-holomorphic sphere with points a, b, c such
that a ∈ A, b ∈ B, c ∈ C . That is, if there is a string world-sheet that connects the
three. The B-model, which reduced to (almost) constant maps, depends only on the
complex structure of M . The A-model and B-model can be interchanged by mirror
symmetry. A powerful example of mirror symmetry is the calculation of Candelas
et al. in P

4 of the quintic Calabi-Yau manifold given by the equation

X = x51 + x52 + x53 + x54 + x55 = 0 . (18)

In the case of the A-model, we have the expression

F(q) = �dndq
d , (19)

nd computes the number of rational curves in M of degree d. It is very difficult
to calculate these numbers. n1 = 2875 was calculated in the nineteenth century, and
n2 = 609250, which counts the different conics, was calculated in 1980. But thanks
to string theory andmirror symmetry we know all these numbers now. Indeed, mirror
symmetry, relates the stringy invariants coming from the A-model on the manifold
M to the classical invariants of the B-model on the mirror manifold M̂ . In particular,
this leads to the Fuchsian differential equation for the function F(d); the resolution
of this equation give us the integers nd .

An essential ingredient that helped in finding the physical solution is the existence of
an equivalent formulation of this physical process using a so-called mirror Calabi-
Yau manifold Y . As far as classical geometry is concerned, the spaces X and Y are
very different; they do not even have the same topology. But in the realm of quantum
theory, they share many properties. In particular, with a suitable identification, the
string propagation in spaces X and Y are identical. The interchange of X with Y is
called mirror symmetry [36, 62]. It is a typical example of a quantum symmetry.

Mirror symmetry is an example of a much broader area of mathematics influenced
by physics: symplectic geometry. Gromov’s theory of pseudoholomorphic curves in
symplectic manifolds had already shown that, at the internal low-dimensional level,
algebraic and symplectic geometry had common features, but the string theorists’s
notion of mirror symmetry brought the parallels between symplectic and algebraic
geometry into much sharper focus. In Kontsevich’s formulation of this phenomenon
- homological mirror symmetry [68] - the natural subspaces on either side of the
algebraic/symplectic divide (algebraic or Lagrangian subvarieties and bundles over
them) are supposed to generate equivalent mathematical objects.
Supersymmetry, the link between bosons and fermions, is a closely related concept
from physics that has also influenced differential geometry. As first noted by Edward
Witten, supersymmetry applied within quantum mechanics is an elegant way to
derive the basic principles of Morse theory [125]. Another application is in the
development of hyper-Kähler geometry - the curved manifestation of Hamilton’s
quaternions. Although the definition has been in the differential-geometric literature
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since the 1950s, it was 30 years later, as a result of the infiltration of ideas from the
supersymmetric sigmamodel, that a mechanism for constructing good examples was
found.

3.4 Cohomology and Invariants

Homology16 and cohomology have emerged as the main instruments of algebraic
topology. Their influence goes far beyond the geometric topology. They provide the
natural expressions for algebraic geometry, in differential geometry, and the algebraic
theory of numbers. The cohomology depends on the local structure of the variety.
It gives an account of forms, and defines them. It connects the continuous to the
discontinuous. But the most remarkable aspect is its universality. There is a pleiad of
cohomology leading to the same results. However, as its name implies, it is the dual of
homology. The latter is based on the global properties of a variety. Some homological
entities are known to all: the orientation of varieties, the connected component of a
point in a topological space (an object in one piece). Another example: H1(T

2), the
set of homology classes of degree 1 of a torus of dimension 2.
In general, there are more algebraic structures with cohomology. For example, the
cohomology group of degree 1 of the torus T

2, H 1(T2) is constructed from the
representations: at each loop, assigning a real or complex number; with ‘composition
constraint’: when a path is obtained by putting two paths end to end, its number
must be the sum of the numbers of the two components; and deformation constraint,
when two close paths have the same number. The set of ‘numerical assignments’
and the “constraints” form H 1(T 2, R) or H 1(T 2, C), depending on the quality of
the numbers employed. It is now an affine plan. The intersection of the paths on the
torus in pairs provides this plane with an area unit. A secondary geometry appeared,
and the group SL 2(Z) is a distinguished part of its symmetries.

Homology can be considered as a general technique in mathematics used to
measure the difficulty that certain sequences of morphisms have being exact. The
idea is precisely to note that if a morphism α on a module M has α2 = 0, then
Im α ∈ Ker α. Everything is in this remark! For we can then characterize the ele-
ments of M that are in the kernel of α (they are called cycles), but which are not in
the image of α (these are called boundaries). So, we form the quotient of modules

H(M, α) = Ker α

Im α

16It is in an article of 1895 that Poincaré [97–99] defines, for the first time, differential manifolds and
chains (or sub-varieties), which he qualifies as homologous (see [97]). Its definition was somewhat
imprecise, but the notion he used matches up exactly with the current acceptance: two closed chains
are homologous if their difference is a boundary. However, Poincaré’s text did not reveal the idea of
Cohomology. The reason for this is that on a manifold, we can obtain completely cohomology from
homology through Poincaré’s duality. Roughly, Poincaré’s duality connects the local statements of
cohomology to the global statements of homology.
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called the homology ofM forα. This construction allows us to characterize the cycles
that are not boundaries. It also allows to associate a sequence of Abelian groups or
modules with a mathematical object like a topological space or a group.
The late 1930s and early 1940s witnessed the rise of homological algebra. This
contributed largely to the emergence of notions of category and functor, ubiquitous
notions in algebra and logic afterwards. Indeed, the tensor products of modules,
the exact sequences and the functors Hom and Ext facilitated a remarkable amount
progress both in calculating the homology group and conceptualizing what would
eventually become the homological algebra in Henri Cartan and Eilenberg’s works
in the 1950s. Algebra topology, as its name indicates so correctly, proposes to study
the topology of space by using algebraic concepts, such as homology groups, but
also homotopy groups.
Another contribution that later led other paths is that of the axiomatization of sim-
plicial homology by Eilenberg and Norman Steenrod in 1945. This work allowed us,
on the one hand, to show that some of the other homologies defined in this context
are isomorphic to simplicial homologies, and on the other hand, it has generated
more generalizations, the generalized homologies, of which the K-theory is only an
example.

In parallel with these developments in the algebraic topology domain, the works
in algebra have conceptualized different essential notions, such as the extension of
abelian groups: an extension of the Abelian group F by the Abelian group H is an
Abelian group G containing F such that H is identified with the quotient G/F . In
other words, we have an exact short sequence of Abelian groups

0 −→ F −→ G −→ H −→ 0

An essential aspect of modern mathematics and physics is the study of the invariants.
Indeed, classifying the invariants became a central issue in physics and mathematics.
In the introduction to his book The Principles of Quantum Mechanics, Clarendon
Press, Oxford, 1930, the young Dirac (1902–1984) wrote:

The important things in the world appear as invariants …The things we are immediately
aware of are the relations of these invariants to a certain frame of reference …The growth of
the use of transformation theory, as applied first to relativity and later to the quantum theory,
is the essence of the new method in theoretical physics.

Two fundamental tools that will play an essential role finding and calculating those
invariants are cohomology and homology. Indeed, cohomology17 plays a fundamen-

17 Usually, the non-vanishing of a cohomology class in algebra, geometry, and topology, express
some sort “failure”. Indeed, often in mathematics, you wish something were true, but in general,
it is not. However, the quantification of how badly it fails help us in determining a more precise
statement that holds generally. The size (or dimension) of the corresponding cohomology group is
a measurement of how many ways things can go wrong. If it is nice or if you can understand it
completely, then you may be able to analyze all the possible failure modes exhaustively, and use
that to prove something interesting. This idea can be applied in an amazingly broad set of contexts.
This somewhat explains the use of cohomology to describe quantization.
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tal role in modern mathematics and physics. As we saw, cohomology is an example
of a local - global structural connection that permeates mathematics.
Cohomology is used in physics18 to compute the topological structure of gauge fields.
This helps to explain why the Maxwell’s equations in electrodynamics are closely
related to cohomology, namely, de Rham cohomology based on Cartan’s calculus
for differential forms and the corresponding Hodge duality on the Minkowski space.
Since the Standard Model in particle physics is obtained from the Maxwell’s equa-
tions by replacing the commutative gauge group U(1) with the noncommutative
gauge group U (1) × SU (2) × SU (3), it should come as no great surprise that de
Rham cohomology also plays a key role in the Standard Model in particle physics
via the theory of characteristic classes (e.g., Chern classes, which were invented
by Shing-Shen Chern in 1945 in order to generalize the Gauss–Bonnet theorem for
two-dimensional manifolds to higher dimensions).
It is very clear now that the gauge-theoretical formulation of modern physics is
closely related to important long-term developments in mathematics pioneered by
Gauss, Riemann, Poincaré andHilbert, aswell asGrassmann, Lie, Klein, Cayley, Elie
Cartan and Weyl. The prototype of a gauge theory in physics is Maxwell’s theory of
electromagnetism. The Standard Model in particle physics is based on the principle
of local symmetry. In contrast to Maxwell’s theory of electromagnetism, the gauge
group of the StandardModel in particle physics is a noncommutative Lie group. This
generates additional interaction forces, which are mathematically described by Lie
brackets.
The presence of a cohomological nature in quantum field theory is confirmed by
the modern treatment of quantum symmetries, gauge invariances, renormalization,
anomalies, the BRST formalism and the numbers associated with the figures (dia-
grams) via the Feynman integrals. For the elliptic type, Witten sees it as a gener-
alization of the characteristic classes, like that of Euler. He deduces the premises
of a (rather infinite) geometric definition of the elliptic cohomology, which enters a
hierarchy:

bordisme et cobordisme −→ cohomologie elliptique −→K-theorie −→ cohomolo-
gie ordinaire

In general, the topological quantum field theories in dimension 3 are cohomologies
of a new type,19 so that the spaces of states M of a quantum field theory seem to be
close to cohomology as well. The spaces M would thus be a cohomology groups;

18In deciding to extend the concepts of homology and cohomology outside the ideal world of math-
ematics, we are led to accept the use of certain analogies. The homology appeared as a redoubling
of abstraction; the homological forms have doubled the algebra of the geometric forms that they en-
veloped. We can quite clearly distinguish two movements: a birth of geometry or algebra followed
by homological stabilization. From a logical point of view, a geometric object and homological
object have the same nature.
19The cycles carried by a surface � are formal combinations of manifolds of dimension 3 bordered
by �; The partition function Z defines a form of intersection on cycles, and homology occurs when
we quotient by the kernel of this form.
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the bundle A of the dynamic states would instead be something like an algebra of
operations.

3.5 String Theory

String theory20, which was originally discovered accidentally in an attempt to under-
stand nuclear forces, has emerged in recent years as a promisingly realistic theory of
all the interactions and, for the first time, a consistent theory of quantum gravity.
To some extent, string theory,21 is a simple generalization of the ordinary framework
of quantum field theory, in which the basic constituents of nature are not point-like
but rather are extended one-dimensional objects-strings. Remarkably, this seemingly
minor extension from point-like particles to extended strings, without modifying in
any other way the fundamental principles of physics, leads to an incredible structure.
This structure implies that the only forces that can exist are only those of the kind we
can see: gravitational and gauge interactions. It can also produce the matter content
of the world as we know it, as well as the specific pattern of forces that we observe. It
also has bizarre implications, requiring that space-time be 10-dimensional. To agree
with the crudest of observations, it must be the case that 6 of the spatial dimensions
are curled up into a little closed space, so that we do not notice them. This can
be achieved, since, as a generalization of Einstein’s theory of general relativity,
the theory incorporates the dynamics of space-time and possesses solutions with 6
compact, curled up, directions of space.
A string may be considered as a parametrized loop.22 In this case, we study the
manifold M through maps:

20See Witten’s contribution in this volume.
21As we said, string theory makes use of deep structures in differential geometry and algebraic
geometry, and connects to the theory of modular functions and finite groups. It even appears to have
a place for branches of mathematics as number theory and knot theory.
22From the point of view of perturbative String Theory, we usually consider the classical motion
of a fundamental string, so that the action is given by Sstring = −TstringV , where T = 1

2πα
is the

tension of the string, α is the Regge slope parameter and V is the area of the string world sheet.
The action is called the Nambu-Goto action. Classically, the Nambu-Goto action is equivalent to
the Polyakov action (the string sigma-model action):

Sσ = − 1

4πα

∫

�

d2σ
√−hhαβημν∂αX

μ∂β X
ν (20)

whereσ and τ are coordinates on theworld sheet, and hαβ(σ, τ ) is aworld sheetmetric, h = dethαβ ,
hαβ is the inverse of hαβ . � denotes the world sheet, and d2σ = dσdτ . The functions Xμ(σ, τ )

describe the space-time embedding of the string world sheet. Quantum mechanically, we use the
path integral to deal with the local symmetries and gauge fixing. Unfortunately, in this case, we have
to handle the problem of anomalies, more specifically a conformal anomaly, unless the space-time
dimension is D = 26. In superstrings (i.e. strings for which supersymmetry is added - either on the
world sheet, as in the so-called RNS sector, or to the background space-time as in the GS sector),
an analogous analysis gives a critical dimension D = 10.
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x : S1 −→ M,

that is, through the free loop space LM . Quantization will associate a Hilbert space
with this loop space. When a string moves in time, it sweeps a surface �. For a
free string, � has the topology of S1 × I , but we can also consider at no extra cost
interacting strings that join and split. In that case, � will be an oriented surface of
arbitrary topology. Therefore, in Lagrangian formalism, we consider the maps:

x : � −→ M,

There is a natural action if we pick the Hodge star or conformal structure on �

(together with the Riemannian metric g on M)

S(x) =
∫

�

gμνdx
μ ∧ ∗dxν , (21)

The critical points of S(x) are the harmonic maps. In Lagrangian quantization
formalism, one considers the formal path-integral over all the maps x : � −→ M :

� =
∫

x :�−→M
e−S/α′

. (22)

Here, the constantα′ plays the role of Planck’s constant on the stringworldsheet�.
It can be absorbed in the volume of the target M by rescaling the metric as g → α′.g.
The semi-classical limit α′ → 0 is therefore equivalent to the limit vol(M) → ∞.

Two remarks are in order: in perturbative string theory, we study the loops in a
space-time manifold. These loops can be thought to have an intrinsic length ls , the
string length. Because of the finite extent of a string, the geometry is necessarily
“fuzzy”. Within the limite ls → 0, the string degenerates to a point, and we recover
the classical geometry. So, the parameter ls controls the “stringiness” of the model.
l2s = α′ plays the role of the Planck constant on theworld sheet of the string. A second
deformation of classical geometry has to do with the fact that strings can be split and
joined, sweeping out a surface� of general topology in space-time. According to the
general rules of quantum mechanics, we have to include a sum over all topologies.
Such a sum over topologies can be regulated if we introduce a formal parameters gs
and the string coupling such that a surface of genus h gets weighted by a factor g2h−2

s .
Higher genus topologies can be interpreted as virtual processes wherein strings split
and join - a typical quantum phenomenon. Therefore, the parameter gs controls the
quantum corrections. In fact, we can equate g2s with Planck’s constant in space-time.
Only for small values of gs can string theory be described in terms of loop spaces
and sums over surfaces.
1.0.1. T-Duality The presence and remarkable power of dualities is one of the hall-
marks of string theory.23 Let us consider the case of particle or string on space-time

23For more details, see [40].
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that is given by the n-dimensional torus T, where

T = R
n/�,

with � beaing a rank n lattice. The quantum state of the particle on T is given by
its momentum p ∈ �∗. The wavefunction �(x) = eipx forms a basis ofH = L2(T)

that diagonalizes theHamiltonian H = −� = p2. So, we can decompose theHilbert
space as

H = ⊕
p∈�∗

H,

where the graded piecesHp are all one-dimensional. There is a natural action of the
symmetry group

G = SL(n, Z) = Aut�

on the lattice � = � and the Hilbert space H.
In the case of a string moving on the torus T, states are labeled with a second
quantum number, the winding number ω ∈ �, which is simply the class in π1T of
the corresponding classical configurations. Thewindingnumber simply distinguishes
the various connected components of the loop space LT, since

π0LT = π1T
∼= � .

We therefore have
�n,n = � ⊕ �∗ ,

where p ∈ �∗ and ω ∈ �.
This is an even self-dual lattice of signature (n, n) with the inner product

p = (ω, k), q2 = 2ω.k .

It turns out that all the symmetries of the lattice �n,n lift to symmetries of the full
conformal field theory built up by quantizing the loop space. The elements of the
symmetry group of the Narain Lattice

SO(n, n, Z) = Aut�n,n

are examples of T-dualities. A particular example is the interchange of the torus with
its dual T ↔ T ∗.
From the string theory point of view, T -duality on a circle maps modes of the string
with momentum (which are heavy when R is small, where R is the radius of the
circle) to modes of the string with winding (which are heavy when R is large).

T -dualities that interchange a torus with its dual can be also applied fiberwise. If
the manifold M allows for a fibration M −→ B whose fibers are tori, then we can
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produce a dual fibration in which we dualize all the fibers. This gives a newmanifold
M̂ −→ B. Under suitable circumstances, this produces an equivalent supersymmetry
sigma model. The symmetry that interchanges these two manifolds M ←→ M̂ is
called mirror symmetry.24

Remark that most of the discovered dualities, thanks to the string theory, are quantum
mechanics by nature. Therefore, quantum mechanics would make possible funda-
mental new symmetries, just as gravity, does in the light ofGeneral Relativity. Indeed,
from gravity we learned about general covariance or the principle of equivalence -
which forever changed our understanding of the role of gravity in nature. So, maybe
the twenty-first century will be the arena of a similar process, but for the quantum
mechanics side this time.

The latest developments in superstring theory, an ambitious theory that attempts to
construct a unified quantum theory of matter and gravity, have begun to meet real
mathematical frontiers. These theories have attracted much attention from mathe-
maticians, since they give strong hints of connections between hitherto separate parts
of mathematics.
Many physicists25 believe that the final understanding of the structure of string theory
will involve fundamental generalizations of geometry. Perhaps we are entering a
golden era in the long history of cooperation between fundamental mathematics and
physics.
The original, highly optimistic expectation that this theory would lead rapidly to new
predictions and tests, has undergone sober reevaluation. It is not that there are any
experimental contradictions, nor are there any indications of internal inconsistency,
rather, it is clear that we do not yet know enough about the structure of the theory
to control its dynamics sufficiently to make contact with experiment. Part of the
problem is that we have stumbled onto this theory by accident, without knowing
what the basic logical setting for the theory is or will be.
A more immediate problem is that in trying to discover the principles of this theory
and applying it to the real world to test its validity, we are faced with the fact that
the basic distance scale of the theory is very, very small. Unfortunately, this length
scale is smaller by 17 orders of magnitude than the smallest distances that we can see
with our most powerful microscopes, our most energetic particle accelerators. The
fact that this number is so small bears responsibility for some of the most striking
features of our universe. For example, the reason stars are so big is that, at the scale
of the radius of ordinary atoms and nuclei, gravity is very weak (because this scale
is 17 orders of magnitude below the Planck scale). In any case, it implies that string

24See Butterfield and de Haro’s contribution in this volume.
25String theorists would freely admit that they don’t know what the theory is, but they are fairly
sure that what they have is a genuine theory. What they observe is its implications at different limits
of coupling constants, where it makes contact with other areas of mathematics. The fundamental
concepts in the terra incognito at its centre are unknown, yet its deep consistency unearths structures
across a wide range of mathematics. They also admit that is harder than they initially thought when
the possibilities opened up in the mid-1980s, but by being harder, it has drawn them closer to
mathematics, and they are quite happy to use the predictive power within that domain, given that
the physical experiments are currently impractical.
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theory and loop quantum gravity are an attempt to extrapolate far, far beyond present
day experiment. Even if we have an idea of the physics at these incredibly small
Planckian distances, it is very hard to make our way up to the distances at which
measurements are done at present.

3.6 Loop Quantum Gravity

Loop quantum gravity represents a research program that is underway, one that also
entails a profound transformation of our traditional notions of space as the continuous
background in which events occur, one that rivals that of Einstein’s general theory
of relativity, in which space-time was given a dynamical significance.26

Loop quantum gravity approach assumes Einstein’s theory can be quantized non-
perturbatively.
Loop quantumgravity is a canonical quantization approach forHamiltonian formula-
tion of Einstein’s general theory of relativity. Abhay Ashtekar, in 1986 reformulated
Einstein’s general relativity in a way that facilitated overcoming the previous stum-
bling blocks of the canonical quantum gravity approaches [1]. in 1988, Carlo Rovelli
and Lee Smolin built on Ashtekar’s work to introduce the loop representation of
quantum general relativity [116]. Since then, lots of progress has been made, and
so far, no fatal flaws have been discovered. However, LQG suffers from a number
of problems; perhaps the most frustrating is that we don’t know if LQG becomes
General Relativity as we move from the (quantized) Planck scale to the (continuum)
scale at which our experiments and observations are done.

In general relativity, the space-time metric itself is the fundamental dynamical
variable. There is no background. On the one hand, it is analogous to the Minkowski
metric inMaxwell’s theory; it determines space-time geometry, provides light cones,
defines causality, and dictates the propagation of all physical fields (including itself).
On the other hand, it is the analog of the Newtonian gravitational potential, and
therefore the basic dynamical entity of the theory. In fact, the equivalence principle
precisely codes this dual role of the metric. It is this feature that is largely responsible
for the powerful conceptual elegance of general relativity.
The absence of background geometry makes it difficult to analyze singularities of
the theory and to define the energy and momentum carried by gravitational waves.
Since there is no a priori space-time, to introduce notions as basic as causality, time,
and evolution, one must first solve the dynamical equations and construct a space-
time. As an extreme example, consider black holes, whose definition requires the
knowledge of the causal structure of the entire space-time. To find whether the given
initial conditions lead to the formation of a black hole, one must first obtain their
maximal evolution and, using the causal structure determined by that solution, ask
if its future infinity has a past boundary [2].

26See Smolin’s contribution in this volume.
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On the quantum theory side, the problems become significantly more serious. Par-
ticles do not even have well-defined trajectories; time-evolution only produces a
probability amplitude, �(x, t), rather than a specific trajectory, x(t). This is due
to the uncertainty principle. Similarly, in quantum gravity, one would not be left
with a specific space-time (after evolving an initial state): how can we introduce
notions such as causality, time, scattering states, and black holes in the absence of a
space-time geometry?
The canonical approach essentially counts on the fact that the Hamiltonian formu-
lation of general relativity is well-defined and attempts to use it as a stepping stone
to quantization. The fundamental canonical commutation relations code the basic
uncertainty principle. The motion generated by the Hamiltonian is to be thought of
as time evolution. The causality is captured by the commuting of certain operators
on the fixed (spatial) three-manifold. The emphasis is on preserving the geometrical
character of general relativity, and on retaining the compelling fusion of gravity and
geometry that Einstein created.

Ashtekar’s canonical variables (a set of three vector fields27 Ea
i , i = 1, 2, 3) provide

what is called the connection representation of canonical general relativity. Ashtekar
introduced this set of variables to represent an unusual way of rewriting the metric
canonical variables on the three-dimensional spatial slices in terms of an SU (2)
gauge field [1]. This choice of variables led to the loop representation of quantum
general relativity and, in turn, loop quantum gravity and quantum holonomy theory.
This set of three vector fields Ea

i , i = 1, 2, 3 is orthogonal, that is,

δi j = qabE
a
i E

b
j .

The Ea
i are called a triad or dreibein, and they can be thought of as the square-root

of the metric. We usually consider

(det(q))qab =
3∑

i=1

Ẽa
i Ẽ

b
i ,

which involves the densitized dreibein Ẽa
i . In fact, Ẽa

i and Ea
i contain the same

information. However, the choice for Ẽa
i is not unique, and in fact, one can perform

a space local rotation with respect to the internal indices i without changing the
(inverse) metric. This is the origin of the SU (2) gauge invariance.

Let Ai
a be the configuration variable, where:

Ai
a = �i

a + βK i
a ,

27There are now two different types of indices, “space” indices a, b, c that behave like regular
indices in a curved space, and ‘internal” indices i, j, k that behave like indices of flat-space (the
corresponding‘metric’ that raises and lowers internal indices is simply δi j ).
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where �i
a = �ajkε

jki and K i
a = Kab Ẽbi/

√
det (q). The densitized dreibein is the

conjugate momentum variable of this three-dimensional SU (2) gauge field (or con-
nection) A j

b , in that it satisfies the Poisson bracket relation

{Ẽa
i (x), A

j
b(y)} = 8πGNewtonβδabδ

j
i δ

3(x − y).

The constantβ is the Immirzi parameter, a factor that renormalizesNewton’s constant
GNewton. The densitized dreibein can be used to reconstruct the metric as discussed
above and the connection can be used to reconstruct the extrinsic curvature.

The radical aspect of the approach lies in the transformation of conventional
notions of space and time as a continuous background in which events occur, as clas-
sically understood, to a notion of space-time as formed by loop-like states, which are
essentially holonomies or structures formed by parallel transport along closed paths.
Holonomies have long featured in gauge field theories as gauge invariant quantities,
representing curvature in the gauge space. Within the approach of loop quantum
gravity, such holonomies become quantum operators. The role SU(2) plays in loop
quantity gravity is as the gauge group of the field of the holonomies. The choice
by Rovelli and Smolin in 1995 of the “spin networks that Penrose had developed
in the 1970s as a model of discrete quantum geometry (see [94, 116]) was key in
establishing these ideas. While a spin basis network can be given for all compact
gauge groups, the one that is relevant to quantum gravity is SU(2), in particular, its
spinor structure.

3.7 Connections Versus Holonomies

The loop representation is an attempt to overcome the difficulties with the connection
representation [89]. The transition between the connection and the loop represen-
tations was originally obtained via the loop transform, which can be thought of as
a kind of functional Fourier transform [105]. Spin networks and spin foams - the
modern formulation of LQG - are formulated in terms of holonomies.
Notice that those holonomies (variables) are gauge-covariant functionals28 supported
on one-dimensional links, or ‘edges’, usually designated by e (following established
LQG notation). For a given edge, i.e., some (open) curve embedded in �, we set

he[A] = P exp
∫

e
Amdx

m , with A ≡ Aaτa . (23)

Hence, he[A] is a matrix-valued functional. The holonomy transforms under the
action of SU(2) at each end of the edge e:

28Whereas in the connection representation, one works with functionals�[A], which are supported
‘on all of �’.
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he[A] → hg
e [A] = g

(
e(0)

)
he[A] g−1

(
e(1)

)
, with g

(
e(0)

)
, g

(
e(1)

) ∈ SU(2) .
(24)

As the conjugate variable to he[A], one takes the ‘flux’ vector

Fa
S [Ẽ] :=

∫

S
dFa (25)

through any two-dimensional surface S embedded in �.

3.8 Quantisation

We now need to find the appropriate commutation relations between the associated
quantum operators [3, 4]. The essential assumption of LQG is that this quantisation
should take place at the level of the bounded hermitean operators he[A], rather than
the connection A itself. This is analogous to ordinary quantum mechanics, when
one replaces the Heisenberg operators x and p with Weyl operators eix and eip; the
spin network representation actually uses the analog of a hybrid formulation with x
and eip. The idea is that it makes no difference whether one quantises the Heisenberg
or the Weyl algebra, i.e., that these quantisations are equivalent.
Recall that in the case of ordinary quantum mechanics, the matrix elements of the
operators corresponding to eiαx and eiβp are smooth functions of the parameters α

and β (see Stone-von Neumann theorem [87, 106, 118]). In LQG the representations
of operators do not satisfy this requirement.29

The discrete nature of space arises in this approach from spin networks forming
space directly. Representations of SU (2) label the edges of the spin network in
three dimensions, and in this way, a mathematical description of the kinematics
of a quantum gravitational field can be obtained in three spatial dimensions. On
its significance, Rovelli remarks of the nature of a spin network; “a spin network
state is not in space: it is space. It is not localized with respect to something else:
something else (matter) might be localized with respect to it [104]. The evolution of
a spin network in time, needed for a Feynman path integral formulation of the theory,
generates a spinfoam structure. One of the consequences of this program (which still
awaits completion), and the manner in which it has forged a place in competition
with string theories, has been to raise deep conceptual questions about the nature of
space and time.

29This is also the reason why the kinematical Hilbert space employed in loop quantum cosmology
is already different from the standard one for a finite number of degrees of freedom [2]. When
the number of degrees of freedom is infinite (as in quantum field theory), the Stone-von Neumann
theorem does not apply anyhow.
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4 Non-commutative Geometry

The Standard Model (SM) of elementary particles has been tremendously successful
in explaining the world at the smallest scales of length that can currently be probed
[117]. Yet, it leaves many feeling a bit uneasy, for some of its properties appear to be
rather ad hoc; few people believe that we have fully understood the Standard Model.
The application of noncommutative geometry [25] (NCG) to the subatomic realm
might over time increase our understanding of the StandardModel. A line of thought
that started with the Connes-Lott model [26] culminated in a geometric description
[16] of the full Standard Model.

4.1 Preliminaries

This approach is rooted in the idea that any compact space X and the commutative
algebra of continous functions on that space,

C(X; C) = { f : M → C; f is continuous}

contain the same information and they are consequently dual.30 The essential point
of this correspondence (or duality) is that various geometric properties of the space
M can be translated into properties of the corresponding algebra C(M), thereby
establishing a link between two completely different fields of mathematics. NCG
is a program with ambition to generalize this correspondence to noncommmutative
algebras and to provide mathematical techniques in order to handle these noncom-
mutative algebras. In physics, we are normally interested in the space M provided
with extra structures. For instance, when M is a Riemannian manifold, i.e., a space
that locally looks like the Euclidean space Rn (for some n) on which we define a
Riemannian metric g. Notice that form the point of view of physics we are interested
in the case in which M is a standardMinkowski space. Unfortunately, the minus sign
of the metric is hard to handle.

At the very heart of NCG lies the notion of a spectral triple, describing a non-
commutative manifold. It is a triple (A,H, D), where A is a unital ∗-algebra that is
represented as bounded operators on a Hilbert spaceH on which aDirac operator D
acts. The latter is an (unbounded) self-adjoint operator that has a compact resolvent
and, in addition, satisfies [D, a] ∈ B(H) ∀ a ∈ A.

• We call a spectral triple even if there exists a grading γ : H → H, with [γ, a] =
0 ∀ a ∈ A and γ D = −Dγ .

• Wecall a spectral triple real if there exists an anti-unitary real structure J : H → H
satisfying

J 2 = ±1, J D = ±DJ.

30For more details, see Connes and Chamsddine’s contributions in this volume.
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The Dirac operator and real structure are required to be compatible via the first-
order condition [[D, a], Jb∗ J ∗] = 0 ∀ a, b ∈ A.

• If a spectral triple is both real and even, there is the additional compatibility relation

Jγ = ±γ J.

The eight different combinations for the tree signs above determine the KO-
dimension of the spectral triple. For more details, we refer to [22].

This is a rather abstract notion, which we will try to make more concrete by
providing an example that plays a key role in the application of NCG to particle
physics.

Example 1 (Canonical spectral triple)The triple (A,H, D) = (C∞(M), L2(M, S),
/∂ := i /∇ S

) serves as themotivating example of a spectral triple. Here,M is a compact
Riemannian manifold that has a spin structure and L2(M, S) denotes the square-
integrable sections of the corresponding spinor bundle. The Dirac operator /∂ is asso-
ciated with the unique spin connection which, in turn, is derived from the Levi-Civita
connection on M . This spectral triple can be extended by a real structure JM (‘charge
conjugation’) and —when dim M is even— a grading γM ≡ γ dim M+1 (‘chirality’).
The KO-dimension of a canonical spectral triple equals the dimension of M .

An essential ingredient that we will need here is a natural functional that can serve
as the equivalent of the action we know from high energy physics. For that, we want
something that only depends on the data that are present in the spectral triple. The
most simplest that meets these requirements would be to count how many of the
eigenvalues of DA are smaller than some mass scale. Now, for technical reasons,
it turns out that taking this is not allowed, and we will have to settle for something
similar:

Tr = [ f (D2
A/�

2] , (26)

where the mass-scale � again appears, as does some (a priori arbitrary) function f .
This is called the spectral action31 postulate.

5 Twistor Theory

The motivation behind twistor theory32 is the opinion that the space-time continuum
picture of reality would prove inadequate on some small scale and that even at
the much larger levels of elementary particles, or perhaps atoms, where quantum
behaviour holds sway, the standard space-time descriptions have ceased to be the

31Using spectral action (26) we can get the Einstein-Hilbert action, which, in turn, gives us the field
equations of General Relativity, including a cosmologial constant!
32For more details, see Penrose’s contribution in this volume.
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Stereographic projection from the
celestial sphere

Fig. 1 The two-dimensional sphere is the simplest example of a non-trivial complex manifold

most physically appropriate ones, with some other picture of reality, though at that
level equivalent to the space-time one, proving to be the more fruitful. The very
fact that quantum behaviour is so hard to picture in the normal way had seemed
to argue strongly that the normal space-time picture of things, even at that level, is
inappropriate physically. Space-time descriptions of the normal kind can, of course,
be used at the atomic or particle level, provided that the quantum rules are correctly
applied, and they have implications that are extraordinarily accurate. Thus, this new
geometrical picture must, at that level, be mathematically equivalent to the normal
space-time picture - in the sense that some kind of mathematical transformation must
exist between the two pictures.
The main two ingredients of twistor theory are non-locality33 in space-time and
analyticity (holomorphy) in an auxiliary complex space, the twistor space.

This auxiliary space can be thought of as the space of light rays at each point in
space-time. Given an observer in a four-dimensional space-time at a point O , his
celestial sphere, i.e., the image of planets, suns and galaxies he sees around him, is
the backward light cone at O given by the 2-sphere

t = −1 and x2 + y2 + z2 = 1 . (27)

Two–dimensional sphere S2 ⊂ R
3 is a one-dimensional complexmanifold with local

coordinates defined by stereographic projection. Let (u1, u2, u3) ∈ S2. Define two
open subsets covering S2

33 Non-locality of the fields in a physical theory is achieved by encoding the field information at
a point in space-time into holomorphic functions on the twistor space. By choosing an appropriate
description, one can cause the field equations to vanish on twistor space, i.e., holomorphy of a
function on the twistor space automatically guarantees that the corresponding field satisfies its field
equations.
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U0 = S2 − {(0, 0, 1)}, U1 = S2 − {(0, 0,−1)},

Stereographic projection from the north pole (0, 0, 1) gives a complex coordinate

U = u1 + iu2
1 − u3

.

Projecting from the south pole (0, 0,−1) gives another coordinate

U ′ = u1 − iu2
1 + u3

.

The domain of U is the whole sphere less the North pole; the domain of U ′ is the
whole sphere less the South pole.
On the overlap U0 ∩U1, we have : U ′ = 1/U , which is a holomorphic function, this
makes S2 into a complex manifold CP

1 (Riemann sphere).

The double covering SL(2, C)
2:1−→ SO(3, 1) can be understood in this context. If

worldlines of two observers travelling with relative constant velocity intersect at a
point in space–time, the celestial spheres these observers see are related by aMöbius
transformation

U ′ → αU + β

γU + δ
,

where the unit–determinant matrix
(

α β

γ δ

)
∈ SL(2, C)

corresponds to the Lorentz transformation relating the two observers.
The fact that the null directions at a point have the holomorphic structure of a Rie-
mann sphere (see [95]), and are closely related to the complex nature of Lorentzian
spinors,were indications that spinors, and particularly Lorentzian 2-spinors, aremore
fundamental than Minkowskian world-vectors, and that the latter should be regarded
as being derived from the former (2). In addition to this, complex numbers often
have significant roles to play in the solutions of Einstein’s vacuum equations. Pen-
rose had been particularly impressed by the nature of the plane-fronted waves (these
having originally been credited to Brinkmann 1923, but later rediscovered by Ivor
Robinson [102] and also of their later generalizations to spherically fronted waves -
credited to Robinson and Trautman [103]. For these waves, the behaviour along the
null geodesics of propagation is fixed and there is completely arbitrary variation from
wave-front to wave-front. But within each wave-front, the strength and polarization
of the wave is governed by a single arbitrary holomorphic function.

I was struck by the direct appearance of a free holomorphic function in the solution, the
modulus and argument of this function both playing a direct role (as strength and polarization,
respectively).
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Twistor theory in the context of space-time is based on the association of a complex
twistor space CP

3 with the space of light rays in space-time.
The twistor space has four complex dimensions (C4). Consequently, it should con-

tain more information than the “conventional space-time” with four real dimensions.
A twistor Z is a point in this twistor space.

5.1 Renormalization and Hilbert’s Twenty-First Problem

The most basic form of the Riemann-Hilbert correspondence34 is a generalization of
Hilbert’s twenty-first problem to higher dimensions, which states: given a series of
points in a complex plane and prescribed monodromies around these points, is there
a Fuchsian ODE with these singularities and monodromies?
So, it codes the correspondence between certain systems of partial differential equa-
tions (linear and having very special properties for their solutions) and possible
monodromies of their solutions. Nowdays, generalizations and refinements of this
problem are called the Riemann-Hilbert problem [24].35 The solutions and tech-
niques used to find the corresponding ODE when it is possible are closely related to
Riemann-Birkhoff factorization (realization of a holomorphic matrix function of a
circle as a product of a matrix holomorphic on a neighborhood of closed disk, and a
function of amatrix holomorphic on a neighborhood of an exterior of the disk includ-
ing infinity and the circle itself). The correspondence between differential equations
andmonodromies can, in fact, be established and is true, in general, in the framework
of sheaf theory.
The relation between the perturbative renormalization and the Riemann-Hilbert cor-
respondence is codified in the Birkhoff factorization and, moreover, the existence of
this unique decomposition is strongly related to an algebraic condition (namely, the
Rota-Baxter property) of the couple regularization scheme and renormalization map.
It shows that Rota-Baxter algebras play the role of a bridge between the study of ill-
defined divergent Feynman integrals in QFT (by renormalization) and the extraction
of finite values based on the Riemann-Hilbert problem in the study of a special class
of differential system [27, 75]. Physical information of a given renormalizable QFT
 are stored in Feynman diagrams equipped with related Feynman rules.

34The original setting of the Riemann-Hilbert correspondence concerned the Riemann sphere and
the existence of regular differential equations with prescribed monodromy groups. However, a
Riemann sphere canbe replacedby an arbitraryRiemann surface, so in the case of higher dimensions,
Riemann surfaces can be replaced by complex manifolds of dimension > 1. In this case, we have
a correspondence between certain systems of (linear) partial differential equations and possible
monodromies of their solutions.
35 This is an equivalence from the category of flat connections on algebraic vector bundles on X with
regular singularities to the category of local systems of finite-dimensional complex vector spaces
on X in the case of regular singular connections. For X connected, the category of local systems is
also equivalent to the category of complex representations of the fundamental group of X .
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5.2 Renormalisation

The discovery of ultraviolet divergences in the 1930s caused many physicists to be-
lieve that the fundamental principles of physics had to be changed. Bethe, Feynman,
Schwinger, Tomonaga, Dyson [110], and others proposed, in the late 1940s, a pro-
gram of renormalization’ that gave finite and physically sensible results by absorbing
the divergences into redefinitions of physical quantities.36 This led to calculations
that agreed with experiment by up to 8 significant digits in QED, the most accurate
calculations in all of science.
Let us restate the main features of the renormalization’s approach:

(i) Ultraviolet divergences: When we perform a naïve calculation using local in-
teractions (delta functions and their derivatives), we find that the results are
generally inconsistent, due to short-distance divergences. The origin of these
divergences is in the fact that quantum mechanics involves sums over a com-
plete set of states, so quantum corrections are sensitive to the properties of
high-momentum intermediate states.

(ii) Regularisation: To parameterize the sensitivity to a short distance, we modify
the theory at a distance scale of order a (the cutoff), so that it is well-defined.
We say that the theory has been regularized. In the theory with the cutoff, the
ultraviolet divergences are replaced by sensitivity to a, in the sense that the
physical quantities diverge in the limit a → 0 with the couplings held fixed.

(iii) Renormalization: The regulated theory apparently has one more parameter than
the naïve continuum theory, namely the cutoff. However, when we compute
physical quantities, we find that they depend only on a combination of the cutoff
and the other parameters. In other words, a change in the cutoff can be com-
pensated for by a change in the couplings, so that all physical quantities are left
invariant. We therefore finally obtain well-defined finite results that depend on
the same number of parameters as the original local formulation.

There is usually considerable freedom in the choice of a regularisation procedure.
Let us mention, among many others, the cut-off regularisation, which amounts
to consideration of integrals over a ball of radius z (with z0 = +∞) and dimen-
sional regularisation,37 consisting, roughly speaking, in integrating over a space of

36 In physics, it is very crucial to characterize the systems in interaction and to distinguish between
bare parameters (such as mass, electric charge, acceleration, etc.), which are the values they would
take if the interaction were switched off, and the actually observed parameters. Renormalisation is
a “procedure” that is able to transform the bare parameters into the actually observed ones, which
are called renormalized (i.e., with interaction taken into account).
37Dimensional regularization is a popular one, because it preserves many of the symmetries of the
QFT in question. It involves rewriting physically interesting integrals over space-time as formal,
but conceptually meaningless, integrals, in which the dimension of space-time becomes a complex
number D. The integrals can then be written in terms of a Laurent series in a complex parameter,
z = D − d, with a pole at z = 0. The point z = 0 corresponds to the original dimension of the
problem, d. Finite values for divergent integrals are then extracted as residues taken around paths
avoiding the singular points, by an application of Cauchy’s theorem. This process of extraction is
called minimal subtraction.
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complex dimension z, with z0 = d, the actual space dimension of the physical situa-
tion (for example, d = 4 for theMinkowski space-time). In this case, the function that
appears is meromorphic in z with a pole at z0 [38, 134]. However, naive dimensional
regularization does not account for the fact that a complicated interaction may have
additional sub-interactions that are also divergent. In the 1950s and 1960s, Bogoli-
ubov, Parasiuk, Hepp [57], and Zimmermann [133] developed, corrected and proved
theBPHZ algorithm for iteratively subtracting divergent sub-interactions [11, 12, 38,
134]. This algorithm applies to dimensional regularization and other regularization
schemes.
Following Wilson’s work [130], we know that the renormalized coupling contains
all available information about the physics of the problem, i.e., the p dependence of
the phase shift [61, 130]. In general, physical quantities depend on more than one
dimensionful quantity, and the relation between renormalized couplings and physical
amplitudes is not so simple, but we will see that they are still more closely related to
physical quantities.
There is a beautiful physical picture that underlies these results, due to K.Wilson. The
renormalized coupling is defined by decreasing themomentumcutoff�while chang-
ing the couplings to keep the low-energy physics the same. Because the theory with a
lower cutoff has fewer degrees of freedom, this can be thought of as coarsegraining,
or integrating out high-momentum fluctuations. In this way, we obtain a family of
effective field theories that describe the same long-distance physics. The reason we
can define such effective field theories is that physics at low momentum is sensitive
to short-distance physics only through the value of the effective coupling. We can
continue lowering the cutoff until it becomes on the order of the physical momen-
tum p. At this point, almost all of the fluctuations have been integrated out, and
the renormalized coupling contains essentially all the dynamical information in the
theory.
The least intuitive part of this picture is that we can lower the cutoff � all the way to
the physical scale p. In fact, if the cutoff and the physical scale are the same, there is
no longer a small parameter that can make the effective field theory description valid.
The reason we can take μ ∼ p is that evolving the couplings from the scale to the
scale μ using the renormalization group equation and boundary condition equation
(28) does not affect the O(1/2) corrections:

�
d

d�
(
1

c
) = − 1

π
, (28)

where� = 1
a is amomentum cutoff, and c a dimensionless coupling constant. This is

our first example of a renormalization group equation. The couplings c(a) defined in
this way are called running couplings. They define a family of effective theories with
different cutoffs such that the low-energy physics is the same for all momenta p.
With its great success in dealing, for several decades,with the problemof divergencies
in quantum field theory, the renormalization process is regarded as one of the greatest
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achievements in modern physics. Nevertheless, mathematicians have been skeptical
about the soundness of the mathematical foundation of the renormalization process.

In general, QFT describes fluctuating systems with continuous degrees of freedom
and is best understood through path integrals of the type

∫
[Dφ] e−S[φ], (29)

where the integration is over a space of functions [74]. When considered as a pertur-
bation of a Gaußian integral, this path integral is expanded over Feynman diagrams.
Because of the continuous nature of the path integral, some of these diagrams yield
divergent quantities, as dictated by dimensional analysis, and can only acquire a
meaning through renormalization.
However, it is fair to say that this new calculus is not yet fully understood. In par-
ticular, it hides an algebraic structure analogous to diffeomorphisms, as uncovered
by Connes and Kreimer a decade ago (see [28–30, 32, 33]) as well as ([24, 31, 35]
for recent reviews). Connes and Kreimer reformulated earlier work by Kreimer and
others on combinatorially-defined Hopf algebras of Feynman graphs in the language
of loop groups [32, 33]. They then applied this new language to dimensional regu-
larization to extract finite values from divergent integrals. Finally, they expressed the
BPHZ renormalization process as the process of Birkhoff decomposition of loops
into a Lie group defined by the Hopf algebra. Connes and Marcolli formulated di-
mensional regularization and BPHZ renormalization in terms of a connection on
a principal bundle over a complex two-manifold B of complex renormalization pa-
rameters (corresponding to mass and space-time dimension) [35]. This bundle, along
with the corresponding connection, seems to be a new object in both mathematics
and physics.

5.3 Feynman Diagrams and Perturbative Renomalization

As far as renormalization is concerned, QFT is best studied in the framework of the
Euclidian path integral.38 In the simplest case, the fields are defined as functions φ

from space-time R
D to R and the dynamics is governed by the action functional,

S[φ] =
∫

dDx

(
1

2
∂μφ ∂ μφ + 1

2
m2φ2 + g

N !φ
N

)
, (30)

where m is a mass and g a coupling constant for an N -particle interaction. At the
quantum level, all the information is encoded in the Green’s functions,

38For more details, see [74].
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G(x1, . . . , xn,m, g) = N
∫

[Dφ] e−S[φ]
� φ(x1) · · · φ(xn), (31)

where the integration is over the space of all fields andN is a normalization constant
to be defined later. � = 6.02 10−34 J·s is Planck’s constant andmeasures the deviation
of the quantum theory from the classical one. In this contribution, we choose a unit
such that � = 1. Note that this is only the simplest model of a scalar field theory.39

To give a precise meaning to (31), it is convenient to expand G(x1, . . . , xn,m, g)
as a power series in g using Feynman diagrams. The latter are best introduced on
a simpler analogue, with the space of fields replaced by a finite dimensional vector
space. Thus, the equivalent of (31) is

Gi1,...,in (A, V ) = N
∫

dφ e−S(φ)φi1 · · · φin , (32)

with the action

S(φ) = 1

2
φ · A−1 · φ + V (φ). (33)

The quadratic term is defined by a positive definite symmetric matrix A,

φ · A−1 · φ =
∑

i, j

(A−1)i jφ jφi , (34)

and the interaction potential V is a polynomial in all the fields

V (φ) =
∑

N

∑

i1,...,iN

gi1,...,iN
N ! φi1 · · · φiN . (35)

In this case, we choose N−1 = det A/2π and expand e−V (φ) as a power series in
the couplings gi1,...,iN . Thus, (32) amounts to the computation of the average of a
monomial using a Gaußian weight and is given by Wick’s theorem: it is a sum over
all possible pairings of the variables in the monomial, each pairing of φi with φ j

being weighted by Ai j . For example,

φiφ jφkφl → Ai j Akl + Aik A jl + Ail A jk . (36)

Then, each term of the expansion of (32) is associated with a diagramwith n external
legs and vertices of valence N ,

39More complicated action functionals are required to account for the real world physics: Spinors
ψ for fermionic particles and gauge connections A for their interactions, as is the case for QED and
the Standard Model of elementary particles. Nevertheless, we restrict our attention in the sequel to
the simplest example of a scalar field theory.
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Gi1,...,in (A, V ) =
∑

�

G �
i1,...,in

(A, V )

S�

. (37)

The contribution of each diagram is computed using the Feynman rules:

• associate the indices i1, . . . , in with the external legs and indices jk to the internal
half edges;

• associate a matrix element A jk jl with any edge connecting the indices jk and jl ;
• associate a coupling −g j1,..., jN to a N -valent vertex whose half edges have indices

j1, . . . , jN ;
• sum over all the indices jk .

Besides, one has to divide by the symmetry factor S� , which is the cardinal of the
automorphism group of the diagram, leaving the external legs fixed. For example,

i1 i2 → 1

2

∑

j1 , j2 , j3
j4 , j5 , j6

Ai1, j1g j1, j2, j3 A j2, j4 A j3, j5 g j4, j5, j6 A j6, i2 . (38)

This simple finite dimensional model already captures some important algebraic
aspects of perturbation theory, as will be discussed in the final section devoted to the
Hopf algebras based on Feynman diagrams.

At a formal level, the Green’s functions (31) can be computed as a power series
in g by replacing φi with a function x �→ φ(x), the matrix element Ai j with the
propagator

K (x, y) =
∫

RD

dD p

(2π)D

eip·(x−y)

p2 + m2
. (39)

and V (φ) with the interaction term

g

N !
∫

RD

dDx φN (x) (40)

= g

N !
∫

RD

dD p1
(2π)D

· · · d
D pN

(2π)D
(2π)Dδ(p1 + · · · + pN )φ̃(p1) . . . φ̃(pN ),

with

φ̃(p) =
∫

RD

dDx e−ip·x φ(x) (41)

being the Fourier transform of φ(x). Heuristically, the Feynman diagrams can be
thought of as quantummechanical processes with particles on their external legs and
virtual particles of momenta p propagating on the internal lines. It is important to
notice that although momentum is conserved at each vertex and along each line, the
particles that propagate along the loops may have arbitrary momenta.

To prevent the propagation of Fourier modes of momenta ≥ �, let us alter the prop-
agator by introducing a cut-off �,
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K (x, y) → K�(x, y) =
∫ ∞

1
�2

dα

∫

RD

dD p

(2π)D
eip·(x−y)e−α(q2+m2). (42)

This procedure is known as regularization and can be performed in various ways.
Besides the method used here, one could also discretize the theory on a lattice or
evaluate the diagrams in complex dimension z and recover the divergences as poles
when z → D. In principle, all these methods are equivalent, but we restrict ourselves
to the momentum space cut-off presented here, since it is suited to the Wilsonian
point of view we adopt in this paper.

For a renormalizable theory like the φ4 theory, one can trade the parameters g and
m for some cut-off-dependent ones g0(�) and m0(�) and further introduce an addi-
tional wave function renormalization Z(�) in such away that Z

n
2 (�)G�(x1, . . . , xn,

m0(�), g0(�)) admits afinite limitwhen� → ∞. Toobtain definite physical predic-
tions, the bare parameters g0(�) and m0(�) and the wave function renormalization
Z(�) must be determined in terms of normalization conditions involving renormal-
ized parameters mr and gr measured at a low energy scale μ. Thus, we define the
renormalized Green’s functions as

Gr(x1, . . . , xn,mr, μ, gr) (43)

= lim
�→∞ Z

n
2 (�,mr, gr, μ)G�(x1, . . . , xn,m0(�,mr, gr, μ), g0(�,mr, gr, μ))

Note that we are dealing here with perturbative renormalization only, so that the
previous equality must be understood as an equality between formal power series in
gr. In fact, g0(�), m0(�) and Z(�) are themselves formal power series in gr that
can be computed in terms of Feynman diagrams using the Bogoliubov-Parasiuk-
Hepp-Zimermann (BPHZ) formula [12, 57]. Roughly speaking, the contribution of
a divergent diagramwith 2 or 4 external legs to the renormalisation of the parameters
is encoded in its counterterm C(�), which is determined recursively by the relation

C(�) = T
( ∑

{�i ,... }
�i∩� j=∅

∏

i

C(�i )
�∏
i �i

)
, (44)

with T taking the divergent part of the diagram. This sum runs over all sets , including
the empty one, of disjoint, divergent, one-particle irreducible subdiagrams of � (i.e.,
diagrams that cannot be disconnected by cutting an arbitrary internal line). The
reduced diagram on the RHS is obtained by shrinking each �i to a single vertex and,
finally, taking the divergent part of thewhole sum,with a finite part determined by the
normalization conditions at the low energy scaleμ. In the framework of dimensional
regularization, this operation is elegantly written as a Birkhoff decomposition for
a loop in the space complex dimension, with values in a group associated with a
commutative Hopf algebra (see the work of Connes and Kreimer [29, 30]).
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5.4 Connes-Kreimer’s Approach

Feynman graphs are Graphs40 built from a fixed set of types of vertex and a fixed
set of types of edges. A physicist is usually interested in numbers, and the Feynman
rules associate a complex number with a Feynman graph �

� → U (�) ∈ C,

However, these numbers are typically infinite and need to be renormalized.
D. Kreimer described the combinatorics of Feynman graphs in terms of a Hopf
algebra structure and formulated the hierarchical structure of subgraphs in terms of
rooted trees. He showed that one can find these rules in very specific characters of the
Hopf algebra HF (). So, the components of the Birkhoff factorization of a Feynman
rules character are other characters such that determine renormalized values, coun-
terterms, a renormalization group and a β-function [23, 33, 76]. This fact shows that
these Birkhoff components have the ability to save physical meanings, and it can be
interested to find situations in which these characters can play the role of integrals
of motion for the given Feynman rules character. Later, A. Connes and Kreimer for-
mulated the Hopf algebra directly in terms of Feynman graphs [33]. As an algebra,
the Hopf algebra H is the free commutative algebra. It turns out that the collection
of all Feynman rules constitutes a group. We start by considering the Feynman rules
� → U (�) ∈ C as characters on the free commutative algebra H generated by all
Feynman graphs.

Theorem 1 (Connes-Kreimer). There exists a co-unit, coproduct and antipode on
the algebra H of Feynman graphs, turning H into a Hopf algebra (and G a group)
[27]. The co-unit is

ε(�)

{
1 i f � = 0

0 otherwise
(45)

and the coproduct is defined by

�(γ ) = � ⊗ 1 + 1 × � +
∑

γ⊆�

γ ⊗ �/γ,

40A Feynman graph is a (non-planar) graph with a finite number of vertices and edges. An internal
edge is an edge connected at both ends to a vertex (which can be the same in the case of a self-
loop), an external edge is an edge with one open end, the other end being connected to a vertex. A
Feynman graph is referred to by physicists as a vacuumgraph, a tadpole graph, or a self-energy graph
(respectively an interaction graph) if its number of external edges is 0, 1, 2, (respectively > 2).
An edge can be of various types depending onwhich elementary particle it represents. A one-particle
irreducible graph (in short, 1P I graph) is a connected graph that remains connected when we cut
any internal edge. A disconnected graph is said to be locally 1P I if any of its connected components
is 1P I .
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The above Hopf algebra H is the algebraic structure underlying the recursive
procedure of renormalization.

– Renormalization as a decomposition in G

Bogoliubov, Parasiuk, Hepp and Zimmermann’s renormalization procedure41 is
based on the following steps: Given a graph �, we replace the unrenormalized value
U (�) with a sum involving suitably defined subgraphs42 γ ⊂ � and the contracted
graphs �/γ or cograph, obtained by collapsing each connected component of γ to a
single vertex,

• Regularization: introduce a parameter z ⊂ C and define new Feynman rules Uz :

� → Uz(�) ∈ C,

The previous infinity becomes a pole at z = 0 of the Laurent series expansion in
z.

• Subtraction : get rid of the whole pole part of the Laurent series expansion: this
gives us the renormalized amplitude

� → Rz(�) ∈ C,

This applies not only to the Feynman graph �, but also to its subgraphs: for a
generic graph � : Rz(�) defined by a recursive procedure.

In fact, for a character Uz : H → C, there exists a character Cz : H → C (coun-
terterm’) defined for z �= 0 as

Cz(�) = −T [Uz(�) +
∑

γ⊆�

Cz(γ )Uz(�/γ )],

with T the projection onto the pole part in dimensional regularization, C(�) =
−T (R̄z), so that [23, 33]

R̄z = Cz ∗Uz = Uz(�) +
∑

γ⊆�

Cz(γ )Uz(�/γ is f ini te at z = 0. (46)

Consequently, the renormalized value of the graph � is given by

R(�) = R̄(�) + C(�) = U (�) + C(�) +
∑

γ⊆�

Cz(γ )Uz(�/γ, (47)

41The mathematical description of the BPHZ method in renormalization is basically designed
according to Atkinson’s theorem. It provides inductive formulae (i.e., integral renormalization
theorems) for components of the Birkhoff factorization of characters on rooted trees such that at
this level, one can find the notion of a decomposition of determined Lie algebras with the Connes-
Kreimer theory.
42Not necessarily connected.
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(C)C+

C

C

D

Lie group GComplex plane

γ(z) = γ−1
− (z)γ+(z), z ∈ C where γ± : C± → G are holomorphic.

Fig. 2 Birkhoff decomposition

Birkhoff decomposition This gives a precise unexpected relation between renormal-
ization and a basic geometric procedure called the Birkhoff decomposition, which
originates in the problem of classifying holomorphic bundles on the sphere. A com-
plex vector bundle E of dimension n on the Riemann sphere is obtained by clutching
together two trivial bundles on the lower and upper hemispheres C±, using a map
γ (z) ⊂ GL(n; C) defined on the commonboundaryC (Figure 2).When one replaces
the group GL(n; C) with a prounipotent simply connected complex Lie group G the
Birkhoff decomposition of a map γ (z) ⊂ G defined on the common boundary C ,
takes the simpler form [27]:

γ (z) = γ −1
− (z)γ+(z),

G is the group of characters of the Hopf algebra of Feynman diagrams, nice
enough so it exists for any loop γ . The renormalisation condition γ−(∞) = 1 ensures
the unicity of the decomposition γ± : C± → G. γ defined on C+ with a pole at D
: γ → γ+(D) is a natural principle for extracting finite value from the singular
expression γ (D).

Connes’s et al.’s works show that the renormalized theory is just the evaluation
at z = D of the holomorphic part γ+ of the Birkhoff decomposition of the loop γ ,
with values in G provided by the dimensional regularization.
Birkhoff decomposition and perturbative renormalization LetA be a complex func-
tion in C in D (= 4),A+ a holomorphic function in C, andA− a polynômial in 1

z−D
without a constant term. So, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Feynman rules : H U=⇒A,

Conterterms : H C=⇒A−,

Renormalized theory : H R=⇒A+,

(48)

where C ∗U = R.
Compose with character χz of A,
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γ (z)
.=χz ◦U, γ−(z)

.=χz ◦ C, γ+(z)
.=χz ◦ R, (49)

where γ (z), z ⊂ C is a loop within the group G of characters of H,

γ (z) = γ −1
− (z)γ+(z),

The renormalized theory is the evolution at D of the positive part of the Birkhoff
decomposition of the bare theory.

Theorem 2 (1) LetH be a graded connected Hopf algebra and φ : H → K be an
algebra homomorphism. The Birkhoff decomposition of the corresponding loop
is obtained recursively from the equalities

φ−(X) = −T (φ(X) +
∑

φ−(X ′)φ(X"))

and
φ+(X) = φ(X) + φ−(X)φ(X) +

∑
φ−(X ′)φ(X")

(2) WhenH is the Hopf algebra of graphs and φ = U is the homomorphism associ-
ated wth the unrenormalized value of graphs in dimensional regularization then
φ− gives the counterterms C and φ+ gives the renormalized value R.

So, we can conclude that the renormalization group, once properly formulated, ap-
pears as a perfect ambiguity group between solutions to a (physics) problem, and
hence plays a very similar role to that of the galois group of an algebraic equation.
And we thereby see a striking similarity between the ambiguity group occurring in
physics and the ambiguities that occur in the resummation processes of divergent
series (Stokes phenomenon, resurgence, etc.)
As stated by A. Connes:

So, the recent years have witnessed the emergence of a much better mathematical under-
standing of perturbative renormalization, both in its Galois aspects related to the ambiguity
inherent in the renormalization group and the role of the Birkhoff decomposition, as well as
in the deep arithmetic nature of the numbers that appear as residues of Feynman graphs in
the renormalization process.

He went on to add:

The main lesson one learns from the above developments is that one should not consider the
divergences of QFT as unwanted nuisances, but rather as the signature of subtle symmetries
of Galois type that prevent one from making simple predictions unless they are carefully
taken into account. It also shows that it is worthwhile to give a precise geometric support to
the dimensional regularization and to understand in a more geometric manner the universal
behavior of counterterms …. [27]



44 J. Kouneiher

6 Dualities, QFT and Integrable Systems

6.1 Matter

The concept of a particle is a natural idealization of our everyday observation of
matter. Dust particles and baseballs, under ordinary conditions, are stable objects
that move as a whole and obey simple laws of motion. However, neither of these is
actually a structureless object. That is, if sufficiently large forces are applied to them,
they can readily be broken apart into smaller pieces.

The idea that there must be some set of smallest constituent parts, which are the
building blocks of all matter, is a very old one. Democritus43 is often credited for this
idea, though his concept of the building block was quite different from ours today.
He introduced the word that, in English, translates into ‘atom’ to describe the parts,
whatever they might be.
History, however, plays tricks with language. The word ‘atom’ has acquired a mean-
ing today that only partly matches Democritus’ idea. Certainly, we know that matter
is indeed composed of the objects we call atoms. Atoms were originally thought to
be indivisible, that is, the smallest particle. However, we now understand that atoms
are built up of smaller parts.

Therefore, the question concerning the nature of he particle is reminiscent of that
relating the atom. So, we pull up the level and again ask: what are particles? How are
they made? Are they just points? Or solid balls? or a kind of vortex in some invisible
fluid, as imagined by Descartes for the stars? Or something else …

We are still very far from any answer. Indeed, the experiments of the nineteenth cen-
tury have caused the classical definitions of particles and waves to be blurred.44

Consequently, we were convinced for some time that we need to exclude the

43Born around 460 BC in Abdera, Thrace, Greece.
44From this perspective particles are discrete, their energy is concentrated into what appears to be
a finite space, which has definite boundaries and contents that we consider to be homogenous (the
same at any point within the particle). Particles exist at a specific location. If they are shown on a
3D graph, they have x , y, and z coordinates. They can never exist in more than one place at once,
and to travel to a different place in space, a particle must move there under the laws of kinematics,
acceleration, velocity, and so forth.

Interactions between particles have been studied for many centuries, and a few simple laws
underpin how particles behave in collisions and interactions. The most primary of these are the
conservation of energy and momentum, which allow us to simplify calculations between particle
interactions on scales of magnitude that vary between planets and quarks.

Waves, unlike particles, cannot be considered a finite entity. Their energy cannot be considered
to exist in a single place, since a wave, by definition, varies in both displacement and time. For
example, a sound wave is a deformation in air pressure, and water waves a deformation of the
water’s surface.
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point-like45 and the solid ball conceptions for the particle. Moreover, when A. Ein-
stein, after the pioneering work of M. Planck, realized one century ago that the light
itself — understood as an oscillation of the electromagnetic field since J.C.Maxwell
— must be quantized into photons, the problem became even more puzzling, and
one was led, through the elaboration of the quantum field theory, to think of each
particle as a quantized excitation of some field.

There is, however, a second mechanism by which a field analogous to the electro-
magnetic field could lead to structures that behave like a particle: the merging out of
a vortex or a soliton as a solution of a non-linear partial differential equation. Maybe
such an idea came into the mind of some scientist a long time ago, by observing
the persistance of a vortex patch in water. When two centuries ago, we were able to
modelize the motion of fluid with Euler equations or the Navier-Stokes equation, it
was possible to check mathematically that, for an incompressible fluid (such as, in a
good approximation the water) the vorticity was conserved. Eventually, this led Sir
Thomson46 to a sophisticated theory of rings and knots of vortices as the ultimate
constituents of the matter.
The study of solitons is an important source of inspiration for theoretical physicists
who seek to elucidate the structure of an elementary particle [56]. This question
began to become relevant as early as the nineteenth century, when the hypothesis
that matter is constituted of atoms was considered more and more seriously (and
before the work of J. Perrin around 1900, when this idea was imposed). It soon be-
came apparent that the naive idea that a particle could be concentrated at one point
had to be abandoned, if only because the energy contained in the electric field in
the vicinity of an electron should then be infinite. The simplest way to escape this
infinity is to assimilate the electron into a sphere, a hypothesis used, in particular,
by H. Poincaré. Obviously, such representation seems to be more of a working hy-
pothesis, rather than a true model. Thus, other attempts at modeling the structure of
the atom or electron were proposed at the time by imagining a sort of whirlwind or
singularity of a fundamental physical field (see the theory of Lord Kelvin, using the
nodes, or the theory of G. Mie). Within this approach, the KdV equation appears
to be a particularly attractive toy, because, despite its relative simplicity, it hides a
mechanism that permits the existence of solitons, these solutions concentrated in
space and characterized by easily recognizable quantities, which one is assimilates
willingly into a mass (energy) or an impulse.

In an area of space, unlike a particle, a wave can propagate until it exists in all locations and at all
times; as a mathematical example we can use a pure sine wave, which has no beginning or end, but
repeats every 2π . However, like particles, we can analyze a part or phase of the wave and obtain a
value for its velocity within this area.
45Because then, charged electrons would have infinite energy.
46Kelvin suggested that molecules are knots in the aether. While we now know that there is no
aether and that molecules are not the fundamental constituents of matter, the idea that matter has a
topological origin remains beautiful and compelling.
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Today, the question of the structure of the elementary constituents of matter can
no longer be addressed without taking into account the upheavals brought about by
quantum mechanics. Thus, the enigma has become even deeper, since Heisenberg’s
principle of uncertainty prohibits the simultaneous determination of the velocity and
position of a particle.
Of course, the quantum theory revolution forced everybody to abandon such naive
descriptions and the success of the atomic model temporarily satisfied people. But
still, the question remained: what are electrons, neutrons, protons, or, as we should
rephrase it now, quarks? They all are fermions, i.e., particles that possess strange
properties, as imposed by Pauli’s exclusion principle: two different fermions cannot
be in the same quantum state, as there is only one place for one fermion in one
quantum state, in contrast to bosons [71].

6.2 Solitons, Dualities and Integrable Systems

Tony Skyrme [55, 56, 113, 114], a British physicist, proposed 47 [80, 113, 115]
going back to the idea of vortices merging out from a kind a fluid dynamics (or from
a field dynamics) to modelize fermions.48

Such hypothesis would have more success at the end of the twentieth century than
earlier, since, beside the examples of the vortices, other phenomena of “particles
merging out” from a smooth field were known. These are called “solitons” by physi-
cists, and we shall see that, as with vortices, solitons were observed more than 150
years ago in nature. Now, we are aware of many models of fields satisfying a partial
differential equation that are soliton equations.

47The Skyrme model is based on a group-valued field from R
3,

U : R
3 → G , (50)

where the Lie group G is usually taken to be SU (2), and U (x) → 1 as |x| → ∞. The degree of
U as a map S3 → SU (2) is identified with a baryon number. The minima of the Skyrme energy,
for each baryon number, are called Skyrmions.
Skyrmions are free to rotate, both in physical space and through conjugation by elements of SU (2).
Quantising this motion gives the Skyrmions spin and electric charge. The proton and neutron, for
example, are distinct quantum states of the essentially unique Skyrmion of degree 1. Therefore,
the Skyrme model [9, 113] is a non-linear theory of pions whose topological soliton solutions are
candidates for an effective description of nuclei, with an identification between soliton and baryon
numbers. Indeed, in the Skyrme model, the basic idea is that a baryon number is identified with the
degree of the mapU in (2.1), or equivalently, with the instanton number (or second Chern class) of
the SU (2) bundle over R

4.
48Recently, M. Atiyah et al., based on the skyrmion idea developed a geometrical model for matter
[9].
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It seems at first glance that the idea that particles, and in particular fermions, are soli-
tons is in contradiction with the dogma of the quantum field theory49 that particles
are a quantization of the energetic excitation of a field (a dogma that is confirmed by
every day physical experiment). Nevertheless, Hooft [61] showed that if we combine
both ideas, it helps in solving the difficult problem of the renormalisation of the
Yang-Mills-Higs model (and there is no other known way to do so).

The idea that fermions could be solitons was actually confirmed in theoretical models
in 1975 by Coleman [21] in the case when the space-time is two-dimensional and
with the sine–Gordon model.50 More precisely, S.Coleman showed that two differ-
ent classical models lead, when the quantum theory is constructed, to describing the
same fermion particle. But in one model, the fermion is a quantum excitation of the
field, and in the other model, the particle is a soliton.51 Hence, both points of view
can be reconciled!

So, in those field theories that have the striking feature that their classical dynamical
equations have particle-like solutions known as solitons, there will be two different
spectra. There is the spectrum of particle-like solitons and the spectrum of the actual
particles. From this idea that, in certain field theories, the two spectra may be inter-
related or inter-reliant emerges the particle-soliton duality.

In the quantized Sine-Gordon model, for example, there are two different particle
spectra: a soliton spectrum and a spectrum arising out of quantization. What makes
this equation so remarkable is the fact that there is a non-local transformation of
the field that turns it into another one-dimensional equation known as the Thirring
model. The transformation maps the soliton particles of the sine-Gordon equation
onto the ordinary quantum excitations of the Thirring model [120], so the two types
of particle are not so different after all. We say that there is a duality between the
two models, the sine-Gordon [84] and the Thirring. They have different equations
but they are really the same.

49Physicists use quantum field theories to describe fundamental particles. These quantum field
theories are derived by quantizing classical field theories. Whereas classical field theories describe
the dynamics of continuum fields, quantum field theories can be interpreted as describing the
interactions of individual particles. Unlike the particles introduced by the quantization procedure,
solitons are germane to the classical, continuum, theory. They owe their particle-like properties, not
to quantization, but to the topology of the field theory itself.
50The sine-Gordon model was invented by Tony Skyrme, the name is a joke because it sounds like
Klein-Gordon.
51The basic properties of solitons, like propagation and interaction without change in their velocity
and shape, make it possible to treat them as robust localized objects. Solitons show their duality,
having properties of both particles and waves. A soliton has the wave’s nature and finite width, but
it behaves like a particle when interacting with other solitons. That is why the solitons are often
spoken of as quasiparticles.
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This phenomenon is surprising and deep and occurs elsewhere in field theory. This
idea has had important applications supersymmetric field theory and in superstring
theory. It is similar to, and linked with, the T-duality.

It is a striking feature of somefield theories that their classical dynamical equations
have particle-like solutions known as solitons. Unlike the particles introduced by the
quantization procedure, solitons are germane to the classical, continuum theory. They
owe their particle-like properties not to quantization, but to the topology of the field
theory itself.
The quantization of field theory with solitons exhibit two different spectra: the spec-
trum of particle-like solitons and the spectrum of the actual particles. Particle-soliton
duality is the idea that, in certain field theories, the two spectramay be inter-related52.
This phenomena is surprising and deep and occurs elsewhere in field theory and has
had important applications in supersymmetric field theory and superstring theory.
In this section, we investigate the conceptual foundation and the development of this
duality and the role of the soliton in some new approaches in mathematical physics.

6.2.1 The Kinks

As a first example of a nonlinear field equation, let us consider

1

c2
∂2φ

∂t2
− ∂2φ

∂x2
+ 2φ(φ2 − 1) = 0.

The solutions to this equation are critical points of the functional

A[φ] :=
∫

R×R

(
1

2c2

∣∣∣∣
∂φ

∂t

∣∣∣∣
2

− 1

2

∣∣∣∣
∂φ

∂x

∣∣∣∣
2

− 1

2
(φ2 − 1)2

)
dtdx .

Let us try to find a solution of the type φ(t, x) = f (x − vt): it leads to the equation

f ′′ = 2β2 f ( f 2 − 1), (51)

where β :=
(
1 − v2

c2

)− 1
2
. We shall assume that |v| < c in the following. One trick is

to look first at solutions of the first order partial differential equation

f ′ + β( f 2 − 1) = 0, (52)

since— as the readers can themselves check— any solution to (52) is automatically
a solution to (51). Then, one easily sees that solutions to the first order equation (52)
are of the form

52See Butterfield and de Haro’s contribution in this volume.
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f (s) = tanh βs.

We can pause to stress the fact that this trick rests on finding Bogomol’nyi solutions
to the second order equation (51). It is based on the fact that the functionalA is part
of a supersymmetric action functional and that the first order Bogomol’nyi condi-
tion is just asking the solution to be invariant by one supersymmetry generator (the
Bogomol’nyi–Prasad–Sommerfeld states)53 (see [55, 56] for more details).

Let us look now at the solution φ(t, x) = tanh(β(x − vt)), that we obtained. We can
observe that:

• it is localised in space: the energy is concentrated in an area of size β−1 around the
point x − vt in space. This soliton (a kink) can be thought of as a kind of particle
!

• the difference Q := 1
2 (φ(t,∞) − φ(t,−∞)) does not depend on t , it is just equal

to 1. We could interpret this number as a charge.54 One way to see that is to
consider the 1-form dφ = ∂φ

∂t dt + ∂φ

∂x dx : it is obviously closed and its integral
over a constant time slice is equal to 2Q as soon as the field is assumed to be
asymptotically constant in time at infinity.

• another solution is − tanh(β(x − vt)). Its charge is -1. It is also a Bogomoln’nyi
solution corresponding to the equation f ′ − β( f 2 − 1) = 0. One could think of
this solution as an antiparticle. Moreover, we could imagine one kink and one
antikink (in such a way that the total charge is 0) travelling towards one another.
When they meet, they cancel each other out, like the disintegration of an electron–
anti-electron pair.

All that suggests strongly that kinks behave like fermions. Note here that the total
charge could only be equal to –1, 0 or 1, because of the conditions at infinity imposed
by the finiteness of the energy

53A consequence of the supersymmetry involved is that the action has the form A[φ] :=∫
R×R

(
1
2c2

|φt |2 − 1
2 |φx |2 − 2(W ′(φ))2

)
dtdx , where here, W (s) = 1

2

( 1
3 s

3 − s
)
. It implies, in

particular, that a function f of x is a solution to (51) if, and only if, it is a critical point of the

functional E[ f ] := ∫
R

(
( f ′)2 + 4β2

(
W ′( f )

)2)
dx . Now, we can write this functional as E[ f ] =

∫
R

((
f ′ + 2βW ′( f )

)2 − 4β f ′W ′( f )
)
dx = ∫

R

((
f ′ + 2βW ′( f )

)2 − 4 βd
dx (W ( f ))

)
dx . If we as-

sume that limx→±∞ f (x) = f±, then the last term on the right hand side is just C :=
4 (W ( f−) − W ( f+)). So, E[ f ] − C is the integral of the square of f ′ + 2βW ′( f ) and a trivial
solution is to set f ′ + 2βW ′( f ) = 0: this is exactly (52) (see [54]).
54 In 1917, German mathematician Emilie Emmy Noether had shown that the mass, charge and
other attributes of elementary particles are generally conserved because of symmetries. For instance,
conservation of energy follows if one assumes that the laws of physics remain unchanged with time,
or are symmetric as time passes. And conservation of electrical charge follows from a symmetry
of a particle’s wave function. Sometimes, however, as in our case, attributes may be maintained
because of deformations in fields. Such conservation laws are called topological, because topology
is that branch of mathematics that concerns itself with the shape of things.
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∫
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dx . (53)

We recover Pauli’s exclusion principle here: there is no place for two kinks on the
same line!

6.3 The Sine–Gordon Equation

A more refined model is the following:

1

c2
∂2φ

∂t2
− ∂2φ

∂x2
+ α

λ
sin λφ = 0.

The solutions φ : R × R −→ R of this equation are critical points of the functional

A[φ] :=
∫
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We are interested in solutions such that their energy
∫
R

(
1
2c2

∣∣∣ ∂φ

∂t

∣∣∣
2 + 1

2

∣∣∣ ∂φ

∂x

∣∣∣
2 + α

λ2 (1 − cos λφ)

)
dx is finite. This requires that, that for

any time, limx→±∞ φ(t, x) = 2π
λ
n±, for n± integer. Thus we could define a kind of

topological charge Q := n+ − n− as before, the only difference being that this charge
could be any number in Z in principle (instead of being in {−1, 0,+1}). Besides the
constant functions, the finite energy solutions of the type φ(t, x) = f (x − vt) have
the form55

φ(t, x) = 2

λ
arc cos

(± tanh β
√

α(x − vt)
) + 2π

λ
n, for |v| < c,

where again β :=
(
1 − v2

c2

)− 1
2
and n ∈ N. Again, it turns out that this solution be-

haves like a soliton and possesses the same properties as the kinks of the previous
equation. So, we can think of these kinks as being fermions of charge ±1. Note that
there is no translating solution with a charge different from −1, 0 or 1. This reflects
the exclusion principle for fermions. Superposition of several fermions would reveal
the repulsion of fermions with the same charge and the attraction of fermions with
opposite charges, with the possibility of annihilation.

55φ is also a Bogomol’nyi solution of the form φ(t, x) = f (x − vt), where f ′ + 2βW ′( f ) = 0

and W (s) := − 2
√

α

λ2
cos λ f

2 .
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6.3.1 The Massive Thirring Model

The surprising result— already suggested by Skyrme56— was that these solitons
really do behave like quantum fermions! This was proved in 1975 by Coleman [21].
For that purpose, we introduce themassive Thirringmodel: the fields are spinor fields
ψ from the 2-dimensional space-time with two complex components ψ1 and ψ2. We
consider the Lagrangian

L(ψ) := ψ(iγ μ ∂

∂xμ
− m)ψ − 1

2
g

(
ψγ μψ

) (
ψγμψ

)
,

where

γ 0 = σ1 =
(
0 1
1 0

)
, γ 1 = −iσ2 =

(
0 −1
1 0

)
,

and γμ = ημνγ
ν for η00 = −η11 = 1, η01 = η10 = 0. Using a perturbative approach,

S. Coleman compared the quantum theories of the sine-Gordon equation with the
quantum massive Thirring model. He found that both models are equivalent if we
assume that

4π

λ2
= 1 + g

π
. (54)

And then, in the sense of quantum operators,

ψγ 1ψ dt + ψγ 0ψ dx = i
λ

2π

(
∂φ

∂t
dt + ∂φ

∂x
dx

)
, (55)

mψ

(
0 0
0 1

)
ψ = − α

λ2
eiλφ and mψ

(
1 0
0 0

)
ψ = − α

λ2
e−iλφ,

where we have omitted a renormalisation constant that depends on the regulari-
sation. Unfortunately, there is no rigorous mathematical proof of that, since both
equations here are non-linear, and so the quantum theory of such equations has no
solid mathematical base. So, the result of Coleman [21] is a verification that n-point
Green functions (which are coefficients of the perturbative expansion) of both the-
ories agree. This result was confirmed through other methods by Mandelstam [81]
and by many other authors since.

56 Skyrme’s explanation was that, in the full quantum theory, it is possible to construct a new
quantum field whose fluctuations are the solitons. The new field operator is obtained through an
exponential expression in the original field φ

ψ±(x) = eiλ(φ±∫ x
−∞ dx ′ ∂φ

∂t ) (5)

with two spin components (and a normal ordering understood).
The construction (56) is an example of the vertex operator construction that would later become im-
portant in string theory and in the representation theory of infinite dimensional algebras (resembling
quantum field theories).
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Note that Eq. (55) relies on two forms which, for classical solutions, are closed, but
each one for different reasons. The left hand side of this equation is the Noether cur-
rent associated with aU (1) invariance of the Thirring equation: it is divergence-free
only if ψ is a solution to the equation; it describes the electric current density due to
themotion of the fermions in space-time. The right hand side of (55) is always closed,
even if φ is not a solution of the sine-Gordon equation; for that reason, it is called a
topological current and integration of this current, on a constant time hypersurface
produces the topological charge Q that we described earlier. It is also important to
observe how relation (54) relates the coupling constants λ and g: if λ is close to 0,
then the perturbative theory of the sine–Gordon is relatively accurate, but then g is
very large and the perturbative theory of the Thirring model is almost meaningless.
On the other hand, if λ ≤ √

4π is close to
√
4π , then g is close to 0 and the situation

is inversed: the perturbative theory for the sine-Gordon is not very good, whereas it
is good for the Thirring equation

We are thus in a situation of duality between two models, particularly interesting be-
cause we could, for instance, use the perturbative quantum theory of the sine–Gordon
model to obtain results on theThirringmodel [120] in the case inwhich g is very large.

6.3.2 Reflexions

Many of the developments in field theory related to the development of current
physics and mathematics are generally characterized by the presence of integrable
systems. Quantum field theory is the application of quantum mechanics to fields and
is one of the cornerstones of modern theoretical physics. These theories describe
systems of several particles and usually have a large (often infinite!) number of de-
grees of freedom. For this reason, they can not be treated exactly, but rather by using
perturbative methods, essentially limited developments in the powers of the coupling
constant. One of the main problems encountered by field theory from the beginning
was to find exact, non-perturbative approaches and methods for circumvent the limi-
tations imposed by the perturbation theory. The concept of integrability proved very
powerful in this regard. During the 1970s, these ideas, which were beginning to be
well understood for the classical systems, were extended to quantum systems, for
which the conserved quantities are generally associated with symmetries that, in
some cases, are hidden. These developments were initially motivated by concrete
physical problems and then led to powerful mathematical concepts, such as quantum
groups in the context of massive integrable field theory and a deeper understanding
of the algebras of Virasoro to the limit of zero mass, which are mostly conformal
theories.

Among the many examples, we will mention three: in the late ’80s, Maxim Kont-
sevich proposed a rigorous mathematical formulation of the conform fields theories
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in dimension two. He proved a remarkable conjecture of E. Witten linking the char-
acteristic classes of spaces of moduli of stable curves with integrable systems. The
demonstration included the first use inmathematics of the technique of Feynman dia-
grams. The second is the two-dimensional topological field theory, which was solved
by Witten in the early 1990s and for which the null part of the partition function is
a tau function of the Korteweg-de Vries hierarchy without dispersion. The third ex-
ample is the complete solution of Seiberg and Witten of the Yang-Mills theory N =
2 super-symmetric with 4 dimensions. Here, the functions of effective low-energy
partitions are tau functions of the Whitham hierarchy re-linked to integrable systems
of the Hitchin type. In the same vein, analogous mechanisms exist in the dualities of
quantum field theories and fully integrable systems. One of the simplest examples is
the duality that appears in the sine-Gordon model in a two-dimensional space-time
for bosonic fields.
We thus see that the search for models in which the duality between solitons and
quanta seems to be realized, and the research of integrable systems leads to the same
kind of equations. It is likely that this parallel between the two approaches goes
deeper [55]. Thus, although we do not know how to prove the duality between the
sine-Gordon equation and themassiveThirringmodel rigorously [120],weknowhow
to establish an analogous duality for simpler models, called “Abelian”, for which the
kinks are replacedwith constant functions per pieces, admitting some discontinuities.
The proof of this result is based on the algebras of Vertex, a geometric description of
which precisely uses the geometry of the loop groups (more precisely, the theory of
the representations of their Central extensions, cf. [84, 100]). The duality between
electricity and magnetism (though considered as conjecture), recognized by Dirac
and later by Olive and Montonen, is another example of this convergence between
duality and the existence of integrable systems. Notice that it is easier to verify
such conjecture when we consider the supersymmetric version of the model, as
noted by Witten and Olive [90]; the verification of this conjecture should be greatly
facilitated if one considers theSupersymmetricYang-Mills-Higgs fields version,with
two (N = 2). This is based on a similar mechanism to the one we have seen. The first
confirmation of these conjectures was obtained by Sen [111] with four systems of
fermionic variables (N = 4). Then, another confirmation was obtained by Seiberg
and Witten [112] for the theory N = 2. Again, these theories naturally involve fully
integrable systems (Hyperkählerian manifolds, etc.) and supersymmetries.

Other dualities havebeendiscovered, such as theT-duality,which is at the origin of the
“mirror symmetry” that corresponds to two varieties of Calabi-Yau, by exchanging
certain data characterizing the complex structures and symplectics (see [85] and the
introduction in [70] for more examples and details). The ‘M theory’, currently under
construction and supposedly able to unite all the known superstring theories (as well
as supergravitation in dimension 11), is based on these various dualities.
A final parallel can be established between supersymmetric space-time models, and
integrable systems. Indeed, several physical constraints of the relevant supersym-
metric models (excluding spin particles greater than 2, which have as many bosons
as fermions) are relatively small and the possible space-time dimensions can vary
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only from 1 to 10 (or 11 for supergravitation). And among these dimensions, four
are preferred: 1 + 2, 1 + 3, 1 + 5 and 1 + 9.
These are the dimensions for which the corresponding spin groups are Isomorphic to
SL(2, L), SL(2, C), SL(2, H) and SL(2; Q) [55]. Geometrically, these dimensions
correspond to the spaces-time in which the celestial sphere is the projective line on,
(respectively) R, C, H and Q. And then, the supergroups of Poincaré admit repre-
sentations that are particularly simple and that restore most of the known examples
of said supergroups (and their central extensions) by reduction to lower dimensions.
The resemblance with the integrable systems is that we can find an organization of
the different theories by reductional dimension of the “fundamental” theories with
‘maximal dimension’ to derived theories, of smaller dimension (by comparison, in
the present state of our knowledge, the most “integrable” systems live on a manifold
of dimension 4 and are governed by C via the twistor space).
This analogy raises the question of the existence of “fundamental” integrable systems
in dimensions 6 or 10 (in which quaternions or octonions play a role).
It is too early to knowwhether such speculationswill succeed or not, and it is probable
that the progress in understanding what lies behind the renormalization will someday
completely modify these theories. The main point of these efforts is the search for
theories based on the most perfect mathematical structures (supersymmetries, fully
integrable systems, dualities).

7 Symmetry and the Foundations of Physics

The idea that the universe is governed by precise causal or dynamical laws,57 is a
very old one, and it largely due to Galileo, Descartes, Newton and others.
Newton, for example, had formulated a highly successful set of laws for material par-
ticles, known today as Newton’s laws of motion and gravitation. So, it was natural for
Newton to try to bring the behavior of light into this paradigm by posing the hypoth-
esis that light consisted of material particles, called corpuscles. However, Newton’s
theory of light could not explain partial reflection, interference or diffraction, as is
well known.

Physicists tried to solve these problems by abandoning Newton’s ontology of cor-
puscles, while keeping his basic assumption that light obeyed deterministic laws,
and replacing corpuscles with a wave. What made this appealing to them was that
Huygens had formulated a law for the propagation of a wave, called Huygens’ prin-
ciple, according to which every point on a wave front acted as a source of secondary
wavelets whose interference was sufficient to reconstruct the subsequent wavefronts.
This was the first dynamical or causal law to govern the propagation of a wave, as
opposed to Newton’s laws that governed the propagation of material particles. And,

57 Here, we should understand the word laws as a set of true principles that form a strong but simple
and unified system that can be used to predict and explain. In other words, it’s a way to understand
a great many complicated phenomena in a unified way, in terms of a few principles.
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using these laws and the new ontology that light is a wave, it was easy to explain all
phenomena of light known at that time, including partial reflection, interference and
diffraction.

The wave theory received a tremendous boost in the nineteenth century with the
introduction of electric and magnetic fields by Faraday and Maxwell. These fields
obeyed causal deterministic laws that were mathematically formulated by Maxwell.
Moreover, light waves were recognized as special cases of this electromagnetic field,
and Maxwell’s laws justified Huygens’ principle. The price to pay by keeping the
paradigm of natural laws58 was that the universe had to be regarded as a strange
mixture of material particles and fields. Physicists lived with this dual ontology, even
when an inconsistencywas found between the two sets of laws that governedmaterial
particles and fields. This inconsistency, first clearly recognized by Einstein, was that
the symmetries of the laws of mechanics that governed material particles were not
the same as the symmetries of the laws of the electromagnetic field [72]. Einstein
required that both symmetries should be the same, and asserted the primacy of fields
over particles by requiring that the laws of mechanics should be modified so that they
have the same Lorentz group of symmetries as the laws of the electromagnetic field.
This was the first time in the history of physics that symmetries took priority
over laws in the sense that the laws were modified to conform to the symmetries.
Moreover, the existence of universal symmetries for all the laws of physics enabled
the construction of a physical geometry having the same symmetries, namely the
Minkowski space-time [14].

The idea of turning groups into basic building blocks for the geometric formulation
of physics is simply the natural result of pushing ahead the old usage of imposing the
compatibility of the observer in the same way Differential Geometry itself considers
admissibility of a local chart. The requirement of a definite structure in the set of
observers, or atlas, seriously delimits the nature of physical laws in that they must
be formulated in terms of, say, GL(n; R)-tensors, although this requirement is not
restrictive enough so as to actually predict dynamical laws. However, the condition
of having defined an associative composition law in a set of active transformations
of a physical system really predicts its dynamics in many cases, and can accordingly
be considered as a basic postulate.

In physics, when a system is considered, we speak of a symmetry (and then about
invariance with respect to this symmetry) by specifying transformations that leave
some related quantities unchanged. Actually, we can define a symmetry as a change
of coordinates or variables that leaves either the action invariant, or the equation of
motion or field equations. Thereby, the first step, from the mathematical standpoint,
arose with the theoretical definition of a symmetry as the invariance under a specific
group of transformation, and was therefore followed by the group theory and the
transformation group that appear in it. This movement culminates with the Erlangen
program, rooted in Klein’s insight [65]. F. Klein’s vision indeed shows that geometry
is perceived as the study of structures on spaces, consideredwith their transformation

58The laws of nature are supposed to be objective, independent of any interest and belief.
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groups. Actually, the great insight of F. Klein has been to underline a unification
principle to embrace different types of geometry. The fundamental point is then that
the space of any geometry is defined with a transitive group action on it, revealing
the invariance under group transformation.

8 The Modern Cosmology

Cosmology is the part of physics that has the whole universe as its area of research.
As such, it covers a vast range of scales. Energy scales go from the present day
temperature of 10−4eV up to the Planck scale 1019GeV. It aims to describe the
evolution of the universe from its very beginning up to today, when it has an estimated
age of the order of 1010 years. Due to its very nature of understanding the universe as
a whole cosmology needs input from very different areas of physics. These naturally
include astrophysics and theories of gravitation, but also plasma physics, particle
physics and experimental physics.
Modern cosmology is based on two fundamental assumptions: first, the dominant
interaction on cosmological scales is gravity, and second, the cosmological princi-
ple is a good approximation to the universe. The cosmological principle states that
the universe, smoothed over large enough scales, is essentially homogeneous and
isotropic.59

Observations such as the high degree of isotropy of the CMB indicate that, globally,
the universe is well described by a spatially homogeneous and isotropicmodel. These
are the Friedmann-Robertson-Walker solutions of general relativity.

How can the cosmological principle be justified? Obviously, the universe is not
homogeneous and isotropic on scales as big as our Solar System, our Galaxy or
even our Local Group of galaxies. Nevertheless, the cosmological principle has been
invoked from the beginning of modern cosmology in the first half of the twentieth
century, when almost nothing about the large-scale structure of the universe was
known. The main reasons for its acceptance were simplicity and the Copernican
principle. Applying the cosmological principle to general relativity yields rather
strong constraints and leads to the simplest category of realistic cosmologicalmodels.

59These models follow from symmetry assumptions that dramatically simplify the task of solving
Einstein’s Fields Equations (EFE). They require that the space-time geometry is both homogeneous
and isotropic. Roughly speaking, homogeneity requires that at a given moment of cosmic time,
every spatial point looks the same, and isotropy holds if there are no geometrically preferred spatial
directions. These requirements imply that the models are topologically � × R, visualizable as
a stack of three-dimensional spatial surfaces �(t) labeled by values of the cosmic time t . The
worldlines of “fundamental observers”, taken to be at rest with respect to matter, are orthogonal to
these surfaces, and the cosmic time corresponds to the proper time measured by the fundamental
observers. The spatial geometry of � is such that there is an isometry carrying any point p ∈ �

to any other point lying on the same surface (homogeneity), and at any point p, the three spatial
directions are isometric (isotropy).
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On the other hand, the Copernican principle, according to which we do not occupy
any special place in the universe, fits the cosmological principle perfectly. If we
perceive the universe around us isotropically, the Copernican principle asserts that
other observers should also see the universe isotropically, since otherwise, we would
occupy a special place in the universe. Since a universe that is isotropic everywhere
is also homogeneous (in fact, isotropy around three distinct observers suffices), the
cosmological principle is a relatively straightforward conclusion from an observed
isotropy and the Copernican principle.

The discovery of cosmic background radiation (CBR) in 1964, together with the
observed Hubble expansion of the universe, established hot big bang cosmology
as a viable model of the universe. The success of the theory of nucleosynthesis in
reproducing the observed abundance pattern of light elements, together with the
proof of the black body character of the CBR, then established hot big bang as the
standard cosmological model.
Actually, cosmology confronts a number of questions: the limits of scientific expla-
nation, the nature of physical laws, and different types of underdetermination, for
example. Due to the uniqueness of the universe and its inaccessibility, cosmology
has often been characterized as more speculative than other areas of physics.

Cosmologists do, however, face a number of distinctive challenges. These challenges
derive from different features of cosmology. One such feature is the finitude of the
speed of light, a basic feature of relativistic cosmology that ensures that global
properties of the universe cannot be established directly by observations. This is a
straightforward limit on observational access to the universe. Another feature is the
interplay between global aspects of the universe and local dynamical laws. Indeed,
cosmology relies on extrapolating local physical laws so as to hold universally.
The StandardModel of cosmology is based on extrapolating local laws to the universe
as a whole. Yet, there may be global-to-local constraints. The uniqueness of the
universe implies that the normal ways of thinking about laws of physics and the
contrast between laws and initial conditions do not straightforwardly apply. In other
areas of physics, the initial or boundary conditions themselves are typically used
to explain other things, rather than being the target of explanation. Many lines of
research in contemporary cosmology aim to explain why the initial state of the
StandardModelwas obtained, but the nature of this explanatory project is not entirely
clear. And due to the uniqueness of the universe, it is not clear what underwrites the
assignment of probabilities.
Therefore, it is difficult to adjudicate this debate, due to the lack of independent
access to the phenomena. The early universe is interesting because it is one of the
few testing grounds for quantum gravity. Without a clear understanding of the initial
state derived from such a theory, however, it is difficult to use observations to infer
the dynamics governing the earliest stages of the universe’s evolution.
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9 Einstein’s Fields Equations - EFE

In general relativity, physical space-time is modeled in terms of differential geometry
as a Lorentzianmanifold whose pseudo-Riemannianmetric, or rather the Levi-Civita
connection that corresponds to it encodes the field of gravity. The action functional
describing the dynamics of this field is the Einstein-Hilbert action, in which the field
of gravity enters in terms of the integral of the scalar curvature of the Levi-Civita
connection over space-time [72].
However, fromEinstein’s point of view, space and timeare different aspects of a single
entity: space-time. Energy and momentum are united analogously. Einstein further
realized that space-time is not a static stage on which physics unfolds, but a dynamic
entity that can curve and bend. Gravitation is understood as a manifestation of space-
time curvature, and space-time is built out of a gravitational field. One mathematical
achievement from this idea is Einstein’s equation for a (pseudo-)metric tensora gμν

on a manifold M (the space-time):

Rμν − 1

2
gμνR + �gμν = 8πGTμν, (56)

where Rμν is theRicci curvature tensor of themetric and R is its scalar curvature. This
equation codes the constraints imposed by the energy –momentum tensor Tμν , which
encodes informations about the distribution of energy and momentum in space-time,
on the metric tensor gμν .
This new picture of space-time made it possible to conceive some ideas that were
impossible to articulate in the Newtonian picture of the world. Consider the most
important fact about cosmology: we live in an expanding universe. The distance
between two galaxies grows with time. But the galaxies are not rushing apart from
each other into some preexisting space, as though blown out of an explosion from
some common center. Rather, more and more space is being generated between the
galaxies all the time, so from the vantage point of any one galaxy, the others appear
to be rushing away. This picture, impossible to imagine in Newton’s universe, is an
inevitable consequence of Einstein’s theory.
Following Einstein’s intuition themanifoldM and themetric should be built simulta-
neously when solving Eq. (56). From this point of view, the only kinematic condition
imposed is that, at each point of space-time, the tangent space is endowed with a
Minkowski metric in the physical case of pseudo-Riemannian manifolds. Then, the
field (gμν) describes the way these metrics depend on the point in a smooth way and
the Einstein equation (56) is the dynamical constraint on gμν .

9.1 Solutions of EFE and the Standard Model of Cosmology

Einstein (1917) introduced a strikingly new conception of cosmology, as the study
of exact solutions to general relativity that describe the space-time geometry of the
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universe. Onewould expect gravity to be the dominant force in shaping the universe’s
structure at large scales, and it is natural to look for solutions of Einstein’s field
equations (EFE) compatible with astronomical observations.
Einstein’s ownmotivation for taking the first step in relativistic cosmologywas to vin-
dicate Mach’s principle and he also sought a solution that describes a static universe,
that is, one whose spatial geometry is unchanging. He forced his theory to accom-
modate a static model by modifying his original field equations, with the addition
of the famous cosmological constant. As a result, Einstein missed one of the most
profound implications of his new theory: general relativity quite naturally implies
that the universe evolves dynamically with time. Four of Einstein’s contemporaries
discovered a class of simple evolving models, the Friedman-Lemaître-Robertson-
Walker (FLRW) models60, that have proven remarkably useful in representing the
space-time geometry of our universe. FLRW is usually reffered to as the Standard
Model of Cosmology.

9.2 Friedmann Equation

In the standard model of cosmology, gravity is described by general relativity61. As
in special relativity, space and time are united to describe a space-time. The invariant
line element of special relativity is given by ds2 = ημνdxμdxν , where

ημν =

⎛

⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ (57)

is theMinkowskimetric. In general relativity, this is determinedbyds2 = gμνdxμdxν

for a general metric gμν . Space-time is curved. The dynamics is determined by
Einstein’s equations62,

60The main results of the FLRW model were first derived by the Soviet mathematician Alexander
Friedmann in 1922 and 1924, but his work remained relatively unnoticed by his contemporaries
[52, 53]. Albert Einstein, who, on behalf of Zeitschrift fr Physik, acted as the scientific referee
for Friedmann’s work, acknowledged the correctness of Friedmann’s calculations, but failed to
appreciate the physical significance of their predictions.
Friedmann died in 1925. In 1927, Georges Lemaître, arrived independently at results similar to
those that Friedmann had and published them in the Annals of the Scientific Society of Brussels
[78]. In the face of the observational evidence for the expansion of the universe obtained by Edwin
Hubble in the late 1920s. Howard P. Robertson from the US and Arthur Geoffrey Walker from
the UK explored the problem further during the 1930s. In 1935, Robertson and Walker rigorously
proved that the FLRW metric is the only one on a space-time that is spatially homogeneous and
isotropic [52, 53, 78, 101, 123].
61For more details, see [77].
62Repeated indices in pairswith one contravariant and one covariant are summed over. Greek indices
take values between 0 and 3.
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Rμν − 1

2
gμνR + �gμν = 8πGTμν, (58)

where the Ricci tensor is defined by Rμν = ∂�σ
μν

∂xσ − ∂�σ
μσ

∂xν + �σ
ρσ�ρ

μν − �σ
ρν�

ρ
μσ , the

Christoffel symbols are defined by�μ
νρ = gμσ

2

(
∂gσρ

∂xν + ∂gνσ

∂xρ − ∂gνρ

∂xσ

)
and R = gμνRμν

is the Ricci scalar. Tμν is the energy-momentum tensor that is conserved, satisfying
∇νT μν = 0.

Einstein’s equations encode the information that geometry determines matter distri-
bution and evolution, and vice versa. Space-time is curved by the presence of matter.
That is why, e.g., the trajectory of light from distant sources is deviated by the sun.
This deflection angle is one of the classical tests of general relativity.
Einstein’s equations are very complex. There are no general solutions known. It is
always necessary to assume some degree of symmetry in order to find solutions. The
Friedmann-Lemaître-Robertson-Walker solutions are isotropic and homogeneous
and are described by the metric

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2
+ r2

(
dθ2 + sin2 θd�2

)]
. (59)

In many cases, matter can be described by a perfect fluid with 4-velocity uμ whose
energy momentum tensor is given by

Tμν = [ρ(t) + P(t)] uμuν + p(t)gμν, (60)

where ρ(t) and p(t) are the energy density and pressure, respectively, which are only
functions of time in a Friedmann-Lemaître-Robertson-Walker background [77].
Homogeneity and isotropy of the universe imply that the energy momentum tensor
takes the diagonal form (T ν

μ ) = diag(−ρ, p, p, p), where ρ is the energy density of
the universe and p the pressure. Energy momentum conservation (T ν

μ ;ν = 0) then
takes the form of the continuity equation

dρ

dt
= −3H(t)(ρ + p), (61)

where the first term in the rhs describes the dilution of the energy due to the expansion
of the universe and the second term corresponds to thework done by pressure. Eq.(61)
can be given the following more transparent form:

d

(
4π

3
a3ρ

)
= −p 4πa2da, (62)

which indicates that the energy loss of a ‘comoving’ sphere of radius ∝ a(t) equals
the work done by pressure on its boundary as it expands.
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The cosmological principle tightly constrains the properties of the surfaces �(t).
These are three-dimensional spaces (Riemannian manifolds) of constant curvature,
and all of the surfaces in a given solution have the same topology. If the surfaces
are simply connected, there are only three possibilities for �: (1) spherical space,
for the case of positive curvature; (2) Euclidean space, for zero curvature; and (3)
hyperbolic space, for negative curvature.
Textbook treatments often neglect tomention, however, that replacing global isotropy
and homogeneity with local analogs opens the door to a number of other possibilities.
For example, there are models in which the surfaces � have finite volume, but are
multiply connected, consisting of, roughly speaking, cells pasted together. Although
isotropy and homogeneity hold locally at each point, above some length scale, there
would be geometrically preferred directions reflecting the way in which the cells are
connected. In these models, it is, in principle, possible to see around the universe
and observe multiple images of a single object, but there is, at present, no strong
observational evidence of such effects.

Note that imposing global isotropy and homogeneity reduces EFE - a set of 10
non-linear, coupled partial differential equations - to a pair of differential equations
governing the scale factor a(t) and ρ(t), the energy density of matter. The scale
factor measures the changing spatial distance between fundamental observers. The
dynamics are then captured by the Friedmann-Lemaître-Robertson-Walker metric
equation (59). Einstein’s equations (58) then lead to the Friedmann equation

H 2 ≡
(
ȧ(t)

a(t)

)2

= 8πG

3
ρ − k

a2
· (63)

Averaging p, we write ρ + p = γρ. Eq. (61) then becomes ρ̇ = −3Hγρ, which
gives us dρ/ρ = −3γ da/a and ρ ∝ a−3γ . For a universe dominated by pressureless
matter, p = 0, and thus γ = 1, which gives us ρ ∝ a−3. This is easily interpreted
as mere dilution of a fixed number of particles in a ‘comoving’ volume due to the
cosmological expansion. For a radiation-dominated universe, p = ρ/3, and thus
γ = 4/3, which gives us ρ ∝ a−4. In this case, we get an extra factor of a(t) due to
the red-shifting of all wave-lengths by the expansion. Substituting ρ ∝ a−3γ in the
Friedmann equation with k = 0, we get ȧ/a ∝ a−3γ /2, and thus a(t) ∝ t2/3γ . Taking
into account the normalization of a(t) (a(t0) = 1), this gives

a(t) = (t/t0)
2/3γ . (64)

For a matter-dominated universe, we get the expansion law a(t) = (t/t0)2/3. ‘Radi-
ation’, however, expands as a(t) = (t/t0)1/2.
The universe, in its early stages of evolution, is radiation-dominated and its energy
density is

ρ = π2

30

(
Nb + 7

8
N f

)
T 4 ≡ c T 4 , (65)



62 J. Kouneiher

where T is the cosmic temperature and Nb (N f ) is the number of massless bosonic
(fermionic) degrees of freedom. The combination g∗ = Nb + (7/8)N f is called the
effective number of massless degrees of freedom. The entropy density is

s = 2π2

45
g∗ T 3 . (66)

Assuming adiabatic universe evolution, i.e., constant entropy in a ‘comoving’ vol-
ume (sa3 = constant), we obtain the relation aT = constant. The temperature-time
relation during radiation dominance is then derived from the Friedmann equation
(with k = 0):

T 2 = MP

2(8πc/3)1/2t
· (67)

We see that, classically, the expansion starts at t = 0 with T = ∞ and a = 0. This
initial singularity is, however, not physical, since general relativity fails at cosmic
times smaller than, roughly, the Planck time tP . The only meaningful statement is
that the universe, after a yet unknown initial stage, emerges at a cosmic time ∼ tP
with temperature T ∼ MP .

9.3 Hubble Expansion

One of themost remarkable discoveries in twentieth century astronomywasHubble’s
(1929) observation that the red-shifts of spectral lines in galaxies increase linearly
with their distance63 [63]. Hubble took this to show that the universe is expanding
uniformly, and this effect can be given a straightforward qualitative explanation
in the FLRW models. The FLRW models predict a change in frequency of light
from distant objects that depends directly on R(t). There is an approximately linear
relationship between red-shift and distance at small scales for all the FLRWmodels,
and departures from linearity at larger scales can be used tomeasure spatial curvature.
For cosmic times t >∼ tP ≡ M−1

P ∼ 10−44 s (MP = 1.22 × 1019 GeV is the Planck
scale) after the big bang, quantum fluctuations of gravity cease to exist. Gravitation
can then be adequately described by classical relativity. Strong, weak and electro-
magnetic interactions, however, require relativistic quantum field theoretic treatment
and are described by gauge theories.
As we know, the standard big bang (SBB) cosmological model [77] is based on the
idea that the universe is homogeneous and isotropic (the cosmological principle).
Under this assumption, the four dimensional space-time in the universe is described

63Hubble’s distance estimates have since beenmodified, leading to a drastic decrease in the estimate
of the current rate of expansion (the Hubble parameter, H0). However, the linear redshift-distance
relation has withstood scrutiny, as the sample size has increased from 24 bright galaxies (in Hubble
1929) to hundreds of galaxies at distances 100 times greater than Hubble’s, and as astrophysicists
have developed other observational methods for testing the relation (see [48, 91, 92]).
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by the Friedmann-Lemaître-Robertson-Walker metric64

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2
+ r2

(
dθ2 + sin2 θd�2

)]
. (68)

The dimensionless parameter a(t) is the scale factor of the universe and describes
cosmological expansion. We normalize it by taking a0 ≡ a(t0) = 0, where t0 is the
present cosmic time.
The instantaneous radial physical distance is given by

R = a(t)
∫ r

0

dr

(1 − kr2)1/2
· (69)

For flat universe (k = 0), R̄ = a(t)r̄ (r̄ is a ‘comoving’ and R̄ a physical vector in
3-space) and the velocity of an object is

V̄ = d R̄

dt
= ȧ

a
R̄ + a

dr̄

dt
, (70)

where overdots denote derivation with respect to cosmic time. The second term on
the right hand side (rhs) of this equation is the ‘peculiar velocity’, v̄ = a(t) ˙̄r , of the
object, i.e., its velocity with respect to the ‘comoving’ coordinate system. For v̄ = 0,
Eq. (70) becomes

V̄ = ȧ

a
R̄ ≡ H(t)R̄ , (71)

where H(t) ≡ ȧ(t)/a(t) is the Hubble parameter. This is the well-known Hubble
law asserting that all objects run away from each other with velocities proportional
to their distances and is considered as the first success of SBB cosmology.

10 Friedmann–Robertson–Walker (FRW) Cyclic Universe
and Elliptic Curves

In this model, the space-time65 can be represented as the direct product of a global
time t-axis and amaximally symmetric three-dimensional space sectionwith ametric
of constant curvature k [82].

64Where r , � and θ are ‘comoving’ polar coordinates, which remain fixed for objects that have no
other motion than the general expansion of the universe. The parameter k is the ‘scalar curvature’ of
the 3-space and k = 0, k > 0 and k < 0 correspond to flat, closed and open universe, respectively
(for more understanding of the Manifolds with scalar curvature see Gromov’s contribution in this
volume).
65During one aeon: one cycle of universe.
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We also choose a fixed time-like geodesic (“observer’s history”), along which the
metric is dt2, and coordinatize each space section at the time t by the invariant
distance r from the observer and two natural angle coordinates θ , � on the sphere
of radius r . By rescaling the radial coordinate, we may and will assume that the
curvature constant k takes one of three values: k = ±1 or 0.
This rescaling produces the natural unit of length, when k �= 0, and the respective
unit of time is always chosen so that the speed of light is c = 1.
The FLRW metric of signature (1,3) is then given by the formula:

ds2 = dt2 − (R(t))2(dr2 + f 2k (r)(dθ2 + sin2 θdφ2)),

where, as usual, fk = sin r, r, sinh r according to k = 1, 0,−1 .
The dynamics in this model is described [88, 121] by one scale factor (real function)
R(t): it increases from zero at the Big Bang of one aeon to infinity during this aeon,
which becomes “almost zero time” of the next aeon. We scale R(t) by putting R = 1
“now”. If we introduce conformal time τ in terms of proper time t by dt = Rdτ , the
FLRW metric can be written as

ds2 = (R(t))2(dτ 2 − dr2 − f 2k (r)(dθ2 + sin2 θdφ2)) = (R(t))2ds̃2, (72)

and then the conformal metric ds̃2 is cyclic: it extends smoothly through each Big
Bang and future infinity. These are separated by infinite intervals of proper time, but
finite intervals of conformal time.

As is conventional, we assume the matter content of the universe to be a mixture
of dust and radiation, together with a positive cosmological constant�. The Einstein
equations reduce to the Friedmann equation:

Ṙ2 = −k + κ(ρM + ργ )R2 + 1

3
�R2, (73)

where κ = 8πG/3, ρM and ργ are the matter and radiation densities, and the overdot
is d/dt with proper-time t , together with the perfect fluid conservation equation

3Ṙ/R = −ρ̇/(ρ + p).

The conservation equation for the two fluids can be solved to give

ρM = AR−3, ργ = BR−4,

in terms of integration constants A, B. For simplicity, assume k = 0, though data
given in, for example, [46] indicates that this term in the Friedmann equation is, in
any case, very small.

Now, the Friedmann equation is just
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Ṙ2 = κ(AR−1 + BR−2) + 1

3
�R2.

For the scale factor at the present time, write R = R0 and introduce constant param-
eters a, b by

�M/�� = a, �γ /�� = b,

at the present time, with the conventional meanings for �M ,�� and �γ . This trans-
lates to

κρM/(
1

3
�) = a, κργ /(

1

3
�) = b,

at the present time, and hence

κA/(
1

3
�R3

0) = a, κB/(
1

3
�R4

0) = b.

Eliminate A, B, introduce S = R/R0 and rationalise (73) as:

S2 Ṡ2 = 1

3
�(b + aS + S4), (74)

or otherwise write it as:
Y 2 = R4 + aR + b, (75)

This function is constrained by the Einstein–Friedmann equations (here with cosmo-
logical constant� = 3), which leads to the introduction of the elliptic curve given by
the equation in the (Y, R)-plane. We shall be interested in conformal time τ rather
than proper time t , so that dt = Rdτ , and for a single aeon, we may choose the
origins to coincide.
Besides the proper time t and the scale factor R(t), global time may be measured
by its conformal version τ given as the integral along a real curve on the elliptic
curve (75):

τ ∼=
∫ R(t)

0

dR

Y
,

where τ = 0 = t at R = 0.
A physical interpretation of the coefficients a, b as characterising matter and radia-
tion sources in (75) shows that, in principle, a, b also depend on time, although for
asymptotic estimates, their values are usually fixed by current observations.
We close this subsection with the following qualitative summary:

In the FRW universe, the evolution of time is essentially described by a real curve
on an algebraic surface (75) that is a family of elliptic curves.
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11 Conclusion

Recent ideas from quantum gravity and string theory challenge the fundamental
concepts of geometry at an even deeper level. Physical intuition tells us that the tra-
ditional pseudo-Riemannian geometry of space-time cannot be a definite description
of physical reality. Quantum corrections in the theory of gravity will change this
picture at distances on the order of the Planck scale. Familiar fundamental proper-
ties such as locality only appear at much larger scales. In fact, there is now much
evidence within string theory - usually referred to as holography’ - that, at the end,
geometry itself is an emergent quantity. The classical laws of gravity only appear
within the limit where the number of degrees of freedom of the underlying quantum
theory is taken to infinity, very similar to the emergence of the macroscopic laws
of thermodynamics out of the microscopic description of statistical mechanics. The
definite mathematical formulation of such a concept of quantum geometry’ [1] is,
however, still far away.

One could also question whether there exists a single overarching mathematical
structure that captures all these aspects of quantum theory, or whether one is simply
dealing with a combination of different complementary points of view, like the charts
and maps of a manifold. As a whole, the study of quantum geometry takes on the
form of a rich mathematical program, very much like the Langland’s program, with
many non-trivial examples, strange relations, dualities and automorphic forms, tying
together diverse fields, with vast generalizations, all in an open-ended project that
seems to encompass more and more mathematics.

The lesson here expresses one given by Dirac in 1939:

It would probably also be a good thing to give a preference to those branches of mathematics
that have an interesting group of transformations underlying them, since transformations play
an important role in modern physical theory, both relativity and quantum theory seeming to
show that transformations are of more fundamental importance than equations [42, p. 125].

Notice that while physicists have been exploring their new and still speculative the-
ories, they have stumbled across a whole range of mathematical discoveries’. These
are derived by physical intuition and heuristic arguments, which are beyond the
reach, as yet, of mathematical rigour, but which have withstood the tests of time
and alternative methods. The impact of these discoveries on mathematics has been
profound and widespread.
The rigorous study of quantumfield theories is a very hard problem and has been slow
in development, even for theories much simpler than those that impact on geometry
[60]. Even though quantum field theory is used in physics every day, the mathemat-
ical foundations underlying the standard model of particle physics still have to be
constructed. Indeed, the problem for mathematicians is that the functional integrals
that form the basis of many of the above approaches, and in which the many exotic
types of symmetry are more obviously present, are as yet not rigorously defined.
Nevertheless, in the current phase of interaction, mathematicians are now becoming
familiar with the physicists’s way of wrapping up mathematical information in a
partition function.
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Mathematics has its own internal dynamics: some fields develop and brush against
neighbouring areas, some settle down to steady progress for a few decades and then
explode. Some of the growth areas of the 1960s, for example, when resources were
poured into science, became quiescent twenty years later, but then sprang back onto
the scene. Or, to take a longer-term view, one highlight Bernhard Riemann’s work in
the mid-nineteenth century on differential geometry; its subsequent development in
higher dimensions by Gregorio Ricci-Curbastro in 1904 prepared it for its phenom-
enal expansion when it was seen as the language in which to express Einstein’s gen-
eral relativity. More recently, and certainly at the International Congress in Madrid,
one experienced the shift from deterministic to stochastic methods, which have their
origins in the nineteenth century physicists’s study of thermodynamics. These move-
ments sometimes originate from developments within the subject, sometimes from
external influences66 [60].
So, instead of reverting to the origins of these new ideas coming from physics,
mathematicians are now developing their own axiomatic versions, in particular, of
topological quantum field theories, to suit their own ends. This is not unusual in
mathematics – instead of asking what the real numbers really are, we are happier to
characterize them by their properties, which we can use on an everyday basis.
This mathematical approach has uncovered a rich structure. For example, a topo-
logical quantum field theory requires a hierarchy of concepts, the lower levels of
which are quite familiar, but progress requires some tough mental activity in getting
a feeling for new objects.
Perhaps a good demonstration of this, is the index theorem, one of themost important
results in the twentieth century for unifying different branches of mathematics (see
[60]).
“In 1962, Michael Atiyah and Isadore Singer began work on this theorem [5]. It
began as a quest to explain why certain rational numbers in algebraic topology
are integers - were they related to dimensions of vector spaces? In pursuing this
aim, they rediscovered one of the fundamental differential operators of physics -
the Dirac operator. Of course, the setting for this was somewhat different - they
were working in Riemannian geometry rather than Einstein’s space-time - but it was
essentially the same operator. There began several proofs: the first two used ideas
from two of the most active areas of mathematics at the time [5–7]. The first was a
part of algebraic topology - Rene Thom’s cobordism theory. Then came the second
proof (with a wider range of applicability) using the far-reaching abstract ideas of
Alexandre Grothendieck in algebraic geometry. Much later, in the mid-1970s, a third
proof involving the heat kernel and differential geometry emerged.
Yet at the same time, physicists were in the process of rediscovering the theorem.
For the physicists, who were studying what they called anomalies, the heat kernel
expansions were commonplace. The new ideas for them were the links with alge-
braic topology. So, the evolution of their theorem was proceeding in the opposite
direction, and only in the late 1970s, as both mathematicians and physicists began

66See Marcolli’s contribution about the interaction between mathematics and computational lin-
guistics.
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to become interested in the Yang-Mills equations, did they really put their heads to-
gether. This was a crucial moment, when the mathematicians realized that physicists
had uncovered a completely new way of looking at what they called connections,
and physicists realized that the problems that had been bothering them for some time
could be resolved through the use of some quite sophisticated mathematics, which
was only then being developed. It was no longer true that the only mathematics a
physicist needed to know was how to integrate by parts!”
Those mathematical results could be viewed as part of a much bigger quantum field
theory, and the full force of the physicists intuition could be brought into play. There
is, then, a difference between the current interactions and those of previous periods.
It involves the scale of interactions, the range of mathematics being utilized and
the changing dynamics of the subject. And still, the underlying irony is that the
mathematical results that are being correctly predicted are often based on a non-
rigorously posed quantum field theory.
Whatever the successes and failures of recent physical theories in the experimental
domain, it is clear that the impact on mathematics, and on geometry in particular, is
permanent, and the recent history shows how these distinct viewpoints work together
for our mutual benefit, producing some of the most exciting and surprising results
in mathematics. Given the rich grounds still to be explored, it seems likely that they
will continue to do so for some time yet.
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Mie’s Electromagnetic Theory of Matter
and the Background to Hilbert’s Unified
Foundations of Physics

Leo Corry

1 Introduction

On November 20, 1915, David Hilbert delivered a talk in Göttingen, presenting
his new axiomatic derivation of the “basic equations of physics”. This talk is often
remembered because, allegedly, Hilbert presented in them, five days prior to Einstein,
the correct, generally-covariant equations of gravitation that lie at the heart of the
general theory of relativity (GTR).

The published version of Hilbert’s talk opens with the following words [15, 395]:

The tremendous problems formulated by Einstein, as well as the penetrating methods he
devised for solving them, and the far-reaching and original conceptions by means of which
Mie produced his electrodynamics, have opened newways to the research of the foundations
of physics. Hilbert [15]

Hilbert’s 1915 talk in Göttingen had traditionally attracted the attention of historians
interested in thework of Einstein and in the development of general relativity. Amain
issue of interest was the possible influences of Hilbert on Einstein’s work and the
question of priority concerning the formulation of the complete and explicit, fully-
covariant equations of gravitation in the framework of the GTR. At the same time,
much less attention was traditionally paid to the question of the place of Hilbert’s
talk, and his interest in GTR within the context of his overall scientific world and his
own research programs.

In my book David Hilbert and the Axiomatization of Physics (1898–1918): From
Grundlagen der Geometrie to Grundlagen der Physik [3], I summarized several
years of my own historical research into the question of the place of physics in
Hilbert’s work and of the specific role of what he defined as “the axiomatic method”
in mathematics and in the empirical sciences. As part of the broad and detailed
historical picture that I aimed at presenting in the book, Hilbert’s involvement with

L. Corry (B)
Tel Aviv University, Tel Aviv, Israel
e-mail: corryleo@gmail.com; corry@post.tau.ac.il

© Springer International Publishing AG, part of Springer Nature 2018
J. Kouneiher (ed.), Foundations of Mathematics and Physics One Century After Hilbert,
https://doi.org/10.1007/978-3-319-64813-2_2

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-64813-2_2&domain=pdf


76 L. Corry

GTR is presented within the context of a long-standing involvement with current
physical research, rather than as a sporadic incursion of a mathematician into the
work of a physicist who was having trouble with a specific, technical issue in his
theory.

One specific aspect of the contribution of my research was the uncovering of
an important document that shed important light on the question of priority in the
formulation of the field equations of GTR. This was the proof galleys of Hilbert’s
talk in the form that were sent to him on December 6, 1915, that is, about two weeks
after the talk and several months before the talk was finally published in March of
1916. The galleys provide us with a closer look at the precise way in which Hilbert
presented the equations in the talk. They make it clear that some crucial details were
still missing when he originally delivered the talk. Later on, he had the opportunity
to correct and complete these shortcomings in the published version. Most probably,
he did so as anyone would correct deficiencies appearing in the proofs of article,
after becoming aware of all the details of Einstein’s published version of his own
correct version [4]. The publication of the galleys gave raise to heated debates among
historians interested in these questions, but for reasons of space I will not go into
that debate in this article (see e.g., [29, 31]).

The purpose of this article is to discuss the two main pillars on which Hilbert
built his own theory as presented in Göttingen on November of 1915. In doing so,
my article repeats much of what appears in the relevant chapters of my book. Of
course, a much clearer understanding of the general context of the story told here
arises when these ideas are presented as part of the broader story told in my book,
and the interested reader is referred to the book for further details.

Themain sections of the article comprise the following: first, I discuss the contents
of Mie’s electromagnetic theory of matter; secondly I explain the context in which
the theory needs to be understood as part of contemporary debates on gravitation in
which also Einstein took part; thirdly, I explain the way in whichMax Born mediated
between Mie and Hilbert by presenting the former’s work in a way that would be
amenable to Hilbert’s current scientific interests. Finally, I give a brief account of
Hilbert’s talk of November 1915 and explain its contents against the background of
the ideas explained in the previous sections.

2 Gustav Mie’s Electromagnetic Theory of Matter

Beginning in 1912, Gustav Mie (1868–1957) developed an original theory of matter
which attempted to elaborate themain tenets of an “electromagneticworld-view elec-
tromagnetic view of nature” [19–21]. More specifically, it was aimed at developing
the idea that the electron cannot be ascribed physical existence independently from
the ether ether. Since the turn of the twentieth century, several physicist had promoted
an electromagnetic world-view and had tried to work out detailed physical theo-
ries that would comply with that view. Prominent among them were Max Abraham
(1875–1922), Walther Kaufmann (1871–1947) and Wilhelm Wien (1864–1928).
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By 1910, however, the program had completely lost momentum, both for intrin-
sic and extrinsic reasons. The intrinsic reasons pertained to some technical problems
that the program, and more specifically the electron theory electron theory, had not
been able to fully solve. The extrinsic reasons pertained to the marginal position
into which the program was pushed as physicists became increasingly interested in
the new horizons opened up by relativity and by the early stages of quantum theory
quantum theory.

Somewhat belatedly,Mie sought to relaunch the programand to formulate a theory
of matter that would help achieve the ambitious goals of unification predicated by
his predecessors. Unlike them, however, he did not reject relativity but rather the
opposite: he took it as a main assumption for his theory. Indeed,Mie’s theory became
the most mathematically elaborate attempt put forward so far in order to achieve the
desired electromagnetic unification. Mie had hoped that in the framework of his
theory the existence of the electron with finite self-energy energy:self-energy could
be derived from the field in purely mathematical terms. What is usually perceived as
material particles, he thought, should appear as nomore than singularities in the ether.
Likewise, compact matter should be conceived as the accumulation of “clusters of
world-lines .” Mechanics and electrodynamics electrodynamics would thus become
the theory of the interaction of the field-lines inside and outside the cluster.

According to Coulomb’s law, the field of a charged particle becomes infinite
when its radius reduces to zero. Mie’s equations generalized those of Maxwell’s
theory in such a way that the repulsive forces predicted inside the electron would be
compensated by other forces of purely electrical nature. At the same time, the devia-
tion of Mie’s equations from Maxwell’s becomes undetectable outside the electron.
According to Mie, the recent development of quantum theory and the discoveries
associated with it suggested the need to formulate some new equations to account
for the phenomena that take place inside the atom. His theory was intended as a pre-
liminary contribution in this direction. Together with an explanation of the existence
of indivisible electrons in purely electromagnetic terms, Mie also sought to present
the phenomenon of gravitation as a necessary consequence of his theory of matter.
He intended to show that both the electric and the gravitational actions were direct
manifestations of the forces that account for the very existence of matter.

Three explicitly formulated, basic assumptions were at the basis of this theory.
The first one is that the electric and the magnetic fields are present inside the electron
as well. This expresses the assumption that the electrons are an organic part of the
ether ether, rather than foreign elements added to it, as was the common belief
among certain physicists at the time. The electron is thus conceived as a non-sharply
delimited, highly dense, nucleus in the ether that extends continually and infinitely
into an atmosphere of electrical charge. An atom is a concentration of electrons, and
the high intensity of the electric field around it is what should ultimately explain the
phenomenon of gravitation. The second assumption is the universal validity of the
principle of relativity (i.e., Lorentz covariance). The third one is that all phenomena
affecting the material world can be fully characterized using the physical magnitudes
commonly associated with the ether: the electric field d, the magnetic field h, the
electric charge density ρ, and the charge current j. While for Mie the validity of the
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principle of relativity was beyond any doubt, he considered his third assumption to
be in need of further validation. Without stating it explicitly, Mie also assumed as
obvious the validity of the energy conservation principle.

An additional constitutive element of Mie’s theory is the separation of physical
magnitudes into “quantity magnitudes” and “intensity magnitudes”. This separation,
which essentially can be traced back at least to Maxwell [34], appears as a central
theme in Mie’s conception of physics throughout his career, beginning with the first
edition of his textbook on electricity and magnetism [18]. “Quantity magnitudes”
may be measured by the successive addition of certain given units of the same
kind: length, time duration, etc. Measuring “intensity magnitudes”, on the contrary,
is not accomplished by establishing a unit of measurement. Rather, one needs to
establish a specific procedure according to which any given measurement of that
magnitude can be attained. The foremost example of an intensity magnitude comes
from the basic concept of mechanics: force. In the theory of elasticity the tension is
an intensity quantity and the deformation is a quantity magnitude; in kinetic theory
the corresponding pair would be pressure and volume [17].

This separation gives a certain coherence and symmetry to Mie’s treatment of
the electromagnetic theory of matter, but it does not really alter its actual physical
content. The magnitudes mentioned in the third basic assumption of the theory, h,
d, ρ, j, are four quantity magnitudes. Against them Mie introduced four intensity
magnitudes: the magnetic induction, b, and the intensity of the electric field, e, and
two additional ones, ϕ, and f . Mie did not assign any direct physical meaning to
the latter two, and he simply stated that the four-vector (f ,iϕ) is in the same relation
to (j,iρ) as the six-vector (b,−ie) is to (h,−id). The introduction of these four
intensity magnitudes allowed Mie to present an alternative formulation of the third
assumption, namely, that all physical phenomena can be described in terms of the ten
values involved in the four intensity magnitudes b, e, ϕ, and f . Mie thus formulated
the Maxwell equations as follows:

rot h = ∂d

∂t
+ j

divd = ρ

rot e = −∂b

∂t

divb = 0

The language of four- and six-vectors in whichMie couched his theory had originally
been introduced by HermannMinkowski (1864–1909) in his work on electrodynam-
ics [25], and it had later been elaborated into the standard one for relativity theory
by Arnold Sommerfeld (1868–1951) [32, 33]. In Mie’s formulation, a possible con-
nection with a tensorial theory of gravitation such as Einstein’s was not particularly
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perspicuous; it only became so, after Born reformulated Mie’s theory in 1913 with
a more suggestive notation, as explained below.

From the issues discussed in Mie’s theory of matter, two are especially relevant
for discussing Hilbert’s later work: the energy principle and gravitation. In Mie’s
theory, the concept of energy is formulated in terms of a scalar function W, the
energy density, which, as a consequence of the Maxwell equations must satisfy the
field equation

∂W

∂t
= −divS,

S being the energy current vector. The energy conservation principle demands that
dW be an exact differential, andMie showed that this demand is fulfilled wheneverW
can be expressed in terms of the four parameters d, h, ρ and j.Moreover, this function
can be determined in terms of a second scalar function H, of the same parameters,
which must satisfy the equation

W = H + h.b + j.f .

Mie investigated several aspects of his theory of gravitation, such as the relations
between the equations and the energy principle, the invariants that appear in the the-
ory, the principle of action and reaction, and the relation between gravitational and
inertial mass. A central point in this discussion was the status of the gravitational
potential ω. Since the latter appears in the theory among the basic dynamic vari-
ables, it follows that the absolute value of the potential —rather than only potential
differences— directly influences physical phenomena. Still, for regions of constant
potential, the form of the equations guarantee that its effects can be fully taken
into account by suitable rescaling all other dynamic variables. Thus, the effect of
a constant gravitational potential could be made to become imperceptible for any
given observer. The possibility of doing this is what Mie called “the principle of the
relativity of the gravitational potential,” which he explicitly formulated as follows
[21, 63]:

If two empty spaces differ from each other only in the fact that in the first one the average
value ω0 of the gravitational potential is very large while in the second one it is zero, then
this difference has no influence whatsoever on the size and form of the electrons and of the
other material particles, on their charge, on their laws of oscillation, and on other motion
laws, on the speed of light, and in general on any physical relations and processes.1

The validity of this principle summarized for Mie the differences between his and
other, contemporary theories of gravitation, especially those of Max Abraham and
of Einstein.

Mie expressed the belief that his brief discussion was enough to prove that the
basic assumptions of the theory led to no contradiction with experience, even in
the case of gravitational phenomena. Preparing the way for a possible empirical
confirmation of the law of gravitation, said Mie, was one of the main aims of his

1Unless otherwise stated, all translations from German are mine.
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article, but he admitted that, at this stage, the results of his research did not really
help at that. Two results derived from his theory, which in principle might be thought
of as offering that possibility could not as a practical matter do so. The first was
the relation obtained in the theory between inertial and gravitational mass. The two
are identical, according to Mie, only if there are no motions inside the particle, and
in general they are in a relation that depends on the temperature and on the atomic
weight. The observable differences between the gravitational acceleration of two
bodies of different masses would be, according to this account, of the order between
10−11 and 10−12 and therefore they would be of no help in constructing an actual
experiment. The second result concerned the existence of longitudinal waves in the
ether, also too small to be detectable by experiment [21, p. 64]).

Mie’s theory contained several difficulties that he was never able to work out
successfully, yet he never really abandoned his belief in its validity. The most serious
shortcoming of the theory is connected with the fact that it depends on an absolute
gravitational potential, and therefore the equations do not remain invariant when
we replace the potential w by a second potential w+const. Under these conditions,
a material particle will not be able to exist in a constant external potential field.
Moreover, in retrospective it is also clear that Mie’s theory did not account for either
red shift or light bending, but these issues did not really become crucial until much
later.2

3 Contemporary Debates on Gravitation

Mie published his electromagnetic theory of matter at a critical time from the point
of view of the development of a relativistic theory of gravitation by Einstein and by
others. Soon after the early formulation of Einstein’s 1905 relativity article, several
physicists were involved in attempts to develop relativistic theories for the vari-
ous domains of physics: mechanics of discrete systems, thermodynamics, statisti-
cal mechanics, hydrodynamics, elasticity, and others. In most cases such attempts
quickly led to satisfactory results. Considerable difficulties appeared, however, when
they were directed towards the relativization of gravitational theories.3 On the other
hand, gravitation was perhaps the domain in which a relativistic treatment seemed
more urgent, if only for the fact that Newtonian theory was based on a concept of
force that is dependent on the distance between two bodies at a given point in time,
and that acts instantly between them. By undermining the classical conception of
simultaneity, Einstein’s new theory of relativity posed a serious challenge to this
fundamental aspect of Newtonian theory.

2 For an historical account of light bending as a test for relativity, see [5]. For a parallel account of
red shift, see [6].
3 Readers interested in an updated, thorough account of the research on the history of general
relativity, including the topics discussed here, should consult the collection [27].
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Minkowski in 1907–1909 had been involved in separate efforts to formulate
a Lorentz-covariant theory of gravitation. So was in 1908 Henri Poincare (1854–
1912). Einstein soon came to deal with this question as well, and as early as 1907 he
convinced himself that a relativistic treatment of gravitation would necessitate a
broader kind of invariance. A major turning point in this context was marked by
Einstein’s arrival in Zurich in August 1912, to take a post at the ETH, A former
fellow of his student days, Marcel Grossmann (1878–1936), was now professor of
mathematics there. Together they started working on the mathematical and physical
aspects of the problem and published a joint paper, the so-called Entwurf paper,
containing the first serious, articulate effort to formulate a “generalized theory of
relativity and a theory of gravitation” [12]. Following its publication in the summer
of 1913, Einstein had ambivalent feelings concerning the value of this theory, but
more often than not he was enthusiastic about the achievement. Over the next two
years he worked almost exclusively, and with tremendous effort, on the details of the
theory and its consequences, and gradually came to realize the essential difficulties
involved in it. At the center of this whole effort lay the successful formulation of
generally-covariant field equations gravitational field equations of the theory of grav-
itation. A satisfactory solution was not reached until November 1915, when Einstein
presented to theBerlinAcademy a famous series of four papers containing his definite
formulation of these equations.

In the background to Einstein’s efforts for generalizing relativity, one finds sev-
eral important ideas interacting with each other. Of paramount importance was the
“equivalence principle” between a gravitational field and an accelerating reference
frame, an equivalence from which also the well-known, observed equality of inertial
and gravitational mass could be derived. Einstein later described the formulation of
this principle as “the most fortunate thought of my life” and he adopted it as a pri-
mary guideline for his research into this question as early as 1907. Unlike in Hilbert’s
axiomatic approach, Einstein’s view of the role of such principles in physical theories
was not as basic elements of a closed deductive system, but rather as open, heuris-
tic guiding ideas for developing the theories in question. The equivalence principle
arose within a very specific setting, namely, the attempt to modify Newton’s theory
of gravitation so as to make it fit the recently formulated theory of relativity. Within
this specific setting, the heuristic value of the equivalence principle lay in allowing
the replacement of a homogeneous, static gravitational field by a uniformly and lin-
early accelerated reference system. In the latter kind of system, Einstein believed, it
would be much easier to develop the necessary theoretical treatment in terms of a
generalization of the principle of relativity [7]. Still, it was only following his reen-
counter with Grossmann that Einstein came to learn the mathematical approach and
tools needed to accomplish this task.

Einstein’s collaboration with Grossman continued over the next two years. Over
this time he was involved in debates and collaboration with other colleagues as well.
One of them was the Finnish Gunnar Nordström. This physicist had suggested a the-
ory of gravitation which, like Mie’s, was also a scalar one. It was much simpler than
Einstein’s Entwurf theory, and Einstein acknowledged some its advantages. Never-
theless, he was not willing to accept its a-priori admittance of Euclidean geometry.
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Another theory discussed at the time was that of Max Abraham. Abraham in 1912
had been involved in a caustic debate where he harshly attacked Einstein’s early
attempts to formulate a relativistic theory of gravitation, and the latter had a hard
time finding the right arguments to defend himself. Still, Abraham was one of the
few physicists whose opinion concerning his own theory, Einstein really valued [2].

In a famous talk of 1913 in Vienna, Einstein discussed the current state of his own
research on gravitation, as well as that of some of his colleagues [8]. Einstein formu-
lated four principles that, in his view, any general relativistic theory of gravitation
gravitation should fulfil:

1. The principles of conservation of energy and of momentum are valid.
2. In closed systems, the inertial mass equals the gravitational mass.
3. The theory of relativity is valid in a restricted sense, i.e., the system of equations

is invariant under generalized Lorentz transformations.
4. Laws that describe observable, natural phenomena do not depend on the absolute

value of the gravitational potentials.

Einstein declared that, among the existing attempts to deal with gravitation theory,
he favored Nordströ’s theory most, because it complied with the above-mentioned
physical principles. On the other hand, he did not even mention Mie’s theory. In
the discussion that followed the talk, and answering a question of Mie, Einstein
explained that unlike the other theories, Mie’s theory did not satisfy the principle of
equivalence and therefore he had not really studied it in detail. More privately, in
a letter written to his astronomer friend Erwin Finlay Freundlich (1885–1964) that
same year, Einstein confided that Mie’s theory was “fanciful and possesses, in my
opinion, a vanishingly small intrinsic probability” of being right [13, Doc. 468].

Another remark that is worth mentioning here came from the Göttingen experi-
mental physicist Eduard Riecke (1845–1915). Like most of his physicist colleagues
in Göttingen, and contrary to the mathematicians of the same university, Riecke
had never been really interested in the new horizons opened by Einstein’s theory.
In this occasion, he asked Einstein if the connection between the electromagnetic
and the gravitational field was somehow explained by his theory. Einstein replied
that, according to the theory, a mutual effect between both fields does exist, “but it
seems futile to try to prove it experimentally.” Only the bending of light rays by the
gravitational field, Einstein said, may fall within the range of observable phenom-
ena [14, Doc. 225]. Since the connection between the two fields will be central to
Hilbert’s unified theory one wonders whether Riecke and Hilbert had the opportunity
to discuss this matter at Göttingen at this time or later on. There is no direct evidence
indicating that they did so.

In December 1913, Mie wrote a detailed criticism of Einstein’s theory. Among
other things, he claimed that the relevant perspective from which to consider the
invariance of Einstein’s theory was that afforded by the principle of relativity of the
gravitational potentials, rather than that of a generalized principle of the relativity of
motion. Moreover, Mie stressed the difficulties implied by a tensorial theory over a
scalar one, difficulties he considered not to be justified by any evident advantages of
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the former approach [22, 169–72]. Above all, Mie criticized the limited covariance
of the Entwurf theory. Einstein replied that Mie had not understood him, but did not
provide an actual rebuttal of his arguments [9].

In his early articles Mie was very explicit in stating that an explanation of gravi-
tation would be an important by-product of his theory, but such an explanation was
never his main aim. Still, Mie continued to lecture and publish on gravitation over the
years [23] and, in fact, to relate to certain aspects of Einstein’s work with a somewhat
critical attitude. In a letter written to Hilbert on February 13, 1916, shortly after the
latter’s presentation of his unified theory in Göttingen, Mie still referred back to the
discussions held in the 1913 Vienna meeting. He manifested his general skepticism
towards the idea of a “general relativity”, but at the same time he confessed that
Hilbert’s own ideas helped him realize that, after all, Einstein had perhaps been very
close to the truth from the beginning. Still, Mie did not believe that Einstein would
attain what he had announced as the aim of his research.4 In 1921 Mie published a
short monograph on Einstein’s theory, where he admitted that the current develop-
ment of the theory was satisfactory from his point of view. Concerning the validity
of the postulate of invariance under arbitrary coordinate transformations coordinate
systems, he wrote [23, 61]:

I think that many of my [non-mathematical] readers will be astonished that it might be
possible at all to satisfy that postulate. In fact, I believe that many professionals will have
to concede that at the time when Einstein was still looking for the correct way to apply it,
they doubted that he would possibly succeed. The author of this essay must confess that
he himself belonged to these skeptics. It took Einstein many years until the problem had
attained the clarity that led to its solution. Finally, however, he found the way to rely on the
geometrical research of several mathematicians, and especially of the genial Riemann, that
had worked out the most general geometries of many-dimensional continua. Einstein filled
up the formerly pure mathematical thoughts of these researchers with physical contents and
thus finally obtained his theory.

Mie’s theory ofmatter, then, and his attempt to explain gravitation in electromagnetic
terms, had a rather convoluted and unfortunate development. Still, it succeeded in
attracting the attention of Hilbert from very early on. In fact, the sequence of events
that led to Hilbert’s foundational, unified physical theory started with his interest
in Mie’s theory as a viable theory of matter. It was only later when he sought to
combine this theory with Einstein’s quest for general covariance, that he was led to
develop the theory that he considered to provide “The Foundations of Physics” in
general. But Hilbert’s encounter with Mie’s theory came in a somewhat roundabout
way, meditated by Max Born, who reformulated it in terms that would fit Hilbert’s
involvement with physics, and particularly with questions related with the structure
of matter, at that time.

4Letter from Mie to Hilbert, February 13, 1916. The letter is preserved in the Hilbert Nachlass,
NSUB Göttingen, Cod Ms David Hilbert 254/2.
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4 Born’s Formulation of Mie’s Theory

Max Born (1882–1970) was the first among the Göttingen scientists to become
interested in Mie’s theory and to dedicate actual efforts to study and develop it. In
fact, it was only through Born’s reformulation of the theory, and perhaps through
his personal mediation, that Hilbert got to adopt it as one of the central pillars of
the unified foundation of physics that he was about to develop over the following
years.Mie’s theory connected naturally with Born’s scientific concerns. After being a
student in Göttingen between 1904 and 1907, Born had returned there in 1908 intent
onworkingwithMinkowski on relativity and on electron theory. Ever since his return,
and particularly after Minkowski untimely death in 1909, Born attained scientific
prominence. By that time he also became a close collaborator in Hilbert’s inner circle
electron theory. OnDecember 17, 1912, Born presented for the first timeMie’s theory
at Göttingen at the meeting of the local Mathematical Society (GMG).5 At the time,
Hilbert was deeply immersed in research on kinetic theory and on radiation theory.
The lecture notes of the courses Hilbert taught in the winter semester of 1912–13
(“Molecular Theory of Matter”) and in the following semester (“Electron Theory”)
in spite of their obvious, direct connection with the issues addressed byMie, show no
evidence of a sudden interest in his theory or in the point of view developed in it. This
may have been connected to the fact that Mie’s strong electromagnetic reductionism
was contrary to Hilbert’s views at the time, which also favored reductionism, but
still from a mechanistic perspective. Born, on the contrary, seems to have been
immediately attracted to Mie’s theory, since he continued to work on it by himself.
Nearly one year later, on November 25, 1913, Born lectured again on Mie’s theory
at the meeting of the GMG.6 On December 16, he presented to the same forum his
own contribution to the theory, dealing with the form of the energy laws in it [1].
This time, he does seem to have caught Hilbert’s attention.

Born was strongly influenced by Hilbert’s views on physics, at least in what
concerns the way physical theories have to be treated. Born stressed above all the
role of the variational argument underlying Mie’s theory, as well as the similarity of
the latterwith the classical, analytical approach tomechanics. Born’s formulationwas
more general than Mie’s, and his presentation was tensorial in spirit, although he did
not explicitly use this word. Rather than speaking of the electromagnetic ether and its
properties, as Mie had done, Born referred to a general four-dimensional continuum
of the coordinates x1, x2, x3, x4, and to the deformations affecting it. The latter are
expressed in terms of the projections u1, u2, u3, u4 (on a system of four orthogonal
axes) of the displacements (Verrückungen) of the points of the continuum. The four
basic electromagnetic magnitudes referred to by Mie, h, d, j and ρ, appear in Born’s
article as no more than specific functions of the four coordinates. Born discussed the
energy conservation principle in these terms and in doing so, he prepared the way

5See the announcement in Jahresbericht der DMV 22 (1913), 27. We have no direct evidence of
the contents of Born’s lecture at this time.
6See the announcement in Jahresbericht der DMV 22 (1913), 207.
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for allowing the connection that Hilbert would eventually create between this theory
and Einstein’s GTR.

One point raised by Born right in his opening sentence could not have failed
to attract Hilbert’s attention: whereas Lorentz’s theory of the electron was based on
certain hypotheses concerning the nature ofmatter (e.g., the rigidity of the electron)—
Born asserted—Mie attempted to derive mathematically the existence of electrons,
and hence of atoms and matter in general, from a modified version of the Maxwell
equations. In other words Maxwell equations, the basic properties of matter could
be derived without having to start from any particular conception about the nature
of physical phenomena.

Born explained the central ideas of Mie’s theory by analogy with Lagrangian
mechanics. The equations of motion of a mass system, he said, can be derived using
the Hamiltonian principle, by stipulating that the integral

∫ t1

t2

(T − U ) dt

has to attain a minimal value. Here T - U is the Lagrangian Lagrangian function
function, which is a function of the position q and of the velocity q̇ of the system:

T − U = �(q̇, q)

The equations obtained from the variational principle are thus well-known:

d

dt

∂�

∂q̇
− ∂�

∂q
= 0. (++)

In mechanics, Born explained, one has the relatively simple case of a quasi-
elastic system, in which the function � has the form � = a

2 q̇2 + b
2q2. One can

also have, however, a more general case in which � is taken to be any arbitrary
function satisfying the basic differential equation (++). Born saw the relation of
Mie’s theory to classical electrodynamics electrodynamics as parallel to that between
these two possibilities in mechanics. Mie had shown how to derive the equations of
electrodynamics from a variational principle similar to the Hamiltonian one, using
only four functions of four variables and taking as � a well-determined quadratic
form of the field magnitudes, which satisfies a differential equation analogous to (eq.
6.3). Born thus concluded [1, 24–25]:

Mie’s equations play the same role for electrodynamics that Lagrange’s equation second-
order equations do for themechanics of systems of points: they provide a formal scheme that,
through a suitable choice of the function �, can be made to fit the special properties of the
given system. Very much as in earlier times the aim of the mechanistic explanation of nature
was pursued by assuming a Lagrangian function � that describes the interactions among
atoms, and from which all physical and chemical properties of matter could be derived, so
has Mie set forward the task of choosing a specific “world-function ” �, in such a way that,
starting from that function and from the basic differential equation it satisfies, not only the
very existence of the electrons and of the atoms might be derived, but also the totality of
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their interactions will emerge. I would like to consider this requirement ofMie as embodying
the mathematical contents of that program that has set down as the main task of physics the
erection of an “electromagnetic world-view.”

Born was alluding here to several issues that were highly appealing to Hilbert’s
sensibilities. Firstly, the analogous conception of mechanics and electrodynamics
in terms of a variational derivation. At least since he attended in 1905 Hilbert’s
lectures on the axiomatization of physics, Born had repeatedly heard the master’s
quest for pursuing unification of physical theories along these lines: the crucial step
in all cases would be the choice of the suitable Lagrangian function, and the axioms
of the theory would provide the constraints for choosing the adequate Lagrangian.
Like Minkowski and like Hilbert, but unlike many other physicists, Born called this
Lagrangian “world-function”. Secondly, Born knew that Hilbert’s preference for
mechanical reductionism was subsidiary to the idea of mathematical simplicity. If
it turned out that electromagnetic reductionism would be simpler in mathematical
terms, then Hilbert would be inclined to adopt it. Finally, and connected to the latter,
the last sentence of the quotation seems to allude to the famous concluding passage of
Minkowski’s talk “Space and Time” [24]. Born suggested that a consistent pursuit of
the line of thought adopted by Hilbert and Minkowski—in which the mathematical
and logical structure of the theory matters above all and in which any commitment to
specific physical underlying assumptions should be avoided as much as possible—
should naturally lead to closer attention to Mie’s theory.

In the body of his treatment, and according to the tensor-like spirit of the presen-
tation, Born introduced the notation

∂uα

∂xβ

= aαβ,

and demanded that all the properties of the continuum might be deduced alone from
the projections of the displacements uα and their derivatives aαβ . In this way, the
variational principle is applied to an integral of the form

∫
�(a11, a12, a13, a14; a22, ..., a44; u1, ...u4)dx1dx2dx3dx4.

If, in addition, one introduces the notation

∂�

∂aαβ

= Xαβ,
∂�

∂uα

= Xα

then the variational principle leads to equilibrium equations that can be expressed as

∑
γ

∂ Xβγ

∂xγ

− Xβ = 0.
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Born characterized Mie’s theory as a particular application of the general variational
principle, in which � is taken to depend on the magnitudes aαβ exclusively through
the differences

aαβ − aβα = ∂uα

∂xβ

− ∂uβ

∂xα

. (∗)

These differences canbe interpreted as the components of the infinitesimal rotation
of a volume element of the continuum in the four-dimensional world. Born showed
that in Mie’s theory, these components appear as the coordinates of the six-vector
vector (b,−ie), where b represents the magnetic induction and e the intensity of
the electric field. The values of the rotational components are obtained from the
determinant

(aαβ − aβα) =

∣∣∣∣∣∣∣∣

0 −Mz My iex

Mz 0 −Mx iey

−My Mx 0 iez

−iex −iey −iez 0

∣∣∣∣∣∣∣∣
If � does not depend explicitly on the four coordinates x1, x2, x3, x4 then the energy
conservation principle is valid in the theory and it can be reformulated as follows7:

∂�

∂xα

=
∑

γ

∂

∂xγ

⎛
⎝∑

β

Xβγ aβα

⎞
⎠ .

If one defines a 4 × 4 matrix T

Tαβ = �δαβ −
∑

γ

aγα Xγβ

then the principle takes the form

DivT = 0.

This general result can be specialized to the case of Mie’s theory, given that its
Lagrangian is assumed to be independent of the four coordinates xi . This assumption,
Born stated, “is the truemathematical reason for the validity of the energymomentum
conservation principle” in the theory [1, 32]. On the other hand, Born also relied on
the dependence of the Lagrangian function on the aαβ via the expressions (*) above.
He thus defined a new 4 × 4 matrix S, S = T + ω, where

ωαβ =
∑

γ

aαγ Xγβ − uα Xβ.

7 Sauer [30, 553] points out that “this assumption distinguishesMie’s theory from the usualMaxwell
theory with charges and currents as external sources are given by the usual Lorentz electron theory.
This theory can formally be included into the general framework by letting � depend on external
sources, however, then � would explicitly depend on the space-time variables.”
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Born showed easily now that Divω = 0, from which he obtained, finally,

DivS = 0.

In Hilbert’s November 1915 talk this matrix S is alluded to as “Mie’s stress-
energy tensor”, and it plays a central role in the theory. In defining it, Born was
introducing a magnitude which is not dependent only on the field’s strength, yet
satisfies the energy equation. Remarkably, in the body of Born’s article gravitation
is barely mentioned, thus suggesting his awareness of the problematic status of this
phenomenon in the framework of Mie’s theory. Born declared that the theory, in
the variational formulation he was proposing here, was an extension of Lagrange’s
“magnificent program”: the theory attempts to find the appropriate world-function
from which all the electromagnetic properties of the electrons and the atoms might
be derived. All properties, that is except gravitation, which, as Born explained in a
significant footnote added at this point, was left outside the scope of the article.

It is likely that Born had discussed these ideas with Hilbert way before the actual
lecture was delivered at the GMG. On October 22, 1913, Mie wrote a letter to Hilbert
expressing his satisfaction for the interest that the latter had manifested (in an earlier
letter, which has not been preserved,) in his recent work.8 Thus, it was probably
not necessary for Born, at this stage, to phrase his introduction with the specific
task in mind of convincing Hilbert of the importance of Mie’s theory and of the
power of its concomitant electromagnetic world-view. But it seems clear that under
the formulation embodied in Born’s presentation and for the reasons alluded in his
introduction, Hilbert himself could not have failed to recognize the direct allure of
Mie’s theory to his own current concerns. Still, some time was needed until Hilbert
came to adopt fully the view of physical reality presupposed by Mie’s theory. In his
lectures on electromagnetic oscillations, during the winter semester of 1913-14, we
find clear indications that Hilbert had begun to think seriously about this theory, but
until his talk of November 1915 on the fundamental equations of physics he never
mentioned Mie’s theory explicitly either in his published work or in the manuscript
of the lectures that have been preserved.

5 Hilbert’s Communication and Mie’s Theory

Wedonot knowwith certaintywhenHilbert finally adoptedMie’s theory as a possible
basis for a unified foundation of physics in general, but we do know that Born was
instrumental in the process leading to it. The second pillar of Hilbert’s theory was
provided by Einstein’s work on general relativity, about which Hilbert had at least
some idea by the end of 1913. Einstein was invited to discuss the current state of
his theory in Göttingen and he visited there between June 29 and July 7, 1915.

8 Mie’s letter is in Hilbert’s Nachlass, Staats- und Universitäts Bibliothek, Göttingen Göttingen -
Cod Ms David Hilbert 254/1.
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Unfortunately, the exact content of his lectures in Göttingen is unknown to us,9 and
yet it is clear that he considered his visit to have been a complete success. He felt
that his theory had been understood to the details and he was deeply impressed by
Hilbert’s personality [11, Doc. 96]. Hilbert, in turn, was likewise impressed by the
younger Einstein [26, p. 193].

Einstein’s trip to Göttingen came after more than two years of intense struggle
with the attempt to formulate a generalized theory of relativity. He had initially
abandoned the demand of general covariance as part of his theory, after coming
to the conclusion that generally covariant field equations would necessarily lack
any physical interest, because they would contradict the principle of causality. The
ground for this conclusion was the so-called “hole argument”, which he introduced
first in the Entwurf paper of 1913, and later articulated most clearly in a summary
of the latter, presented in October 1914 to the Berlin Academy of Sciences [9]. Quite
certainly, Einstein’s lectures in Göttingen did not depart significantly from what he
had presented in this summary.

Einstein’s quest for a relativistic theory of gravitation was eventually crowned
with success only after he abandoned completely the ‘hole argument’, and adopted
general covariance again as a leading principle of that theory. Einstein’s confidence on
the validity of the argument, however, did not begin to erode until mid-October 1915.
He thus embarked in the effort that led him to present four consecutive papers at the
weekly meetings of the Berlin Academy, starting on November 4. The fourth paper,
presented on November 25, contained his final version of the generally covariant
field equations of gravitation. Over this crucial month of November, Einstein and
Hilbert engaged in an intensive correspondence in which they reported to each other,
in “real time”, about their current progress in developing their respective results.
They also continued to correspond with each other after presenting their respective
works. A detailed analysis of the interchange of ideas between Einstein and Hilbert,
and of their possible mutual influence is, of course, an enormously interesting and
important topic but for reasons of space I will not address it here. In this section I
focus on the connection between Mie’s and Hilbert’s theory.

As already mentioned, Hilbert’s communication appeared in print onMarch 1916
in the proceedings of Göttingen Academy of Science under the title: “The Founda-
tions of Physics” [15]. This printed version, however, differs substantially from what
he actually presented in his talk, as we learn from the galley proofs that I uncovered
in 1994 in Hilbert’s Nachlass and which sheds much light upon this entire story.
The proof galleys are dated December 6, 1915. The most significant differences
between the two versions are not marked on the proofs themselves, and they were
probably introduced somewhat later, that is, after December 6. It is worth noticing,
moreover, that Hilbert’s article was republished again in 1924 in the Mathematische
Annalenwith some additional, interesting changes, and yet once againwith additional

9Actually, I made some efforts to gather documents related to this visit, unfortunately without much
success. Nevertheless, I did find inHilbert’sNachlass inGöttingen the handwritten notes taken by an
unidentified person at the first of Einstein’s lectures (Staats- und Universitäts Bibliothek, Göttingen,
Cod Ms D Hilbert 724). These notes have now been published in [10, 586–90].
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editorial comments in 1932, in the third volume of Hilbert’s collected works. Typ-
ically, Hilbert did never mention any of the major changes he introduced between
the various versions. In [15, 1], for instance, Hilbert explained that he was basi-
cally reprinting what had appeared in the past in two parts, with only minor editorial
changes. Again, for lack of space the detailed analysis of these interesting changes
is beyond the scope of this article.

Hilbert’s theory took from Einstein the account of the structure of spacetime
in terms of the metric tensor. Mie’s theory served as a basis for explaining the
structure of matter in terms of the electromagnetic fields. To these two elements
Hilbert applied powerful mathematical tools taken from the calculus of variations
and from Riemannian geometry.

The first axiom of Hilbert’s theory of gravitation (which he called: “Axiom I:
Mie’s axiom of the world-function”) is based on a variational argument. The axiom
is formulated for a scalar Hamiltonian function10 H(gμν, gμνl, gμνlk, qs, qsl), whose
parameters are the ten gravitational potentials gμν , togetherwith their first and second
derivatives

gμνl = ∂gμν

∂ωl
, gμνlk = ∂2gμν

∂ωl∂ωk
(l,k = 1, 2, 3, 4)

and the four electromagnetic potentials qs , together with their first derivatives qsl .
The gravitational potentials gμν are the components of a symmetric tensor and, like
in Einstein’s theory, they constitute the metric tensor of a four-dimensional manifold.
The electromagnetic potentials behave like vectors with respect to the four world-
parameters ωl (l = 1, 2, 3, 4). The Hamiltonian is used to derive the basic equations
of the theory, starting from the assumption that, under infinitesimal variations of its
parameters, the variation of the integral

∫
H

√
gdω

(where g = |gμν |, and dω = dω1dω2dω3dω4) vanishes for any of the potentials.
In fact, instead of the covariant magnitudes gμν and their derivatives, Hilbert used
consistently the contravariant tensor gμν and their derivatives throughout the argu-
ment. The second basic axiom of the theory (Axiom II: axiom of general invariance)
postulates that H is invariant under arbitrary transformations of the coordinates ωl .

Hilbert added two interesting footnotes that explain the relation of the two first
axioms withMie’s and with Einstein’s works respectively. First, he said, Mie himself
had not included the electromagnetic potentials and their derivatives in the world-
function, but rather this had been a contribution of Born. Thus, from this point on,
it is clear that Hilbert will be referring to Born’s version of the theory, rather than to

10 In present-day terms, this function would be more properly called a Lagrangian function, while
the term “Hamiltonian” usually refers to functions involving momenta and representing the total
energy of the system considered. For the purposes of the present article and for the sake of historical
precision, however, it seems more convenient to abide by the original terminology.
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Mie’s original one. Still, what characterizes Mie’s theory, Hilbert explained, is the
very introduction of the world-function as part of the Hamiltonian. Second, Mie had
postulated the demand of orthogonal, rather than general covariance. But whereas
in Einstein’s work the Hamiltonian principle plays only a secondary role, Axiom II
expresses in the simplest way his demand for general covariance.

Besides the two basic axioms, the core of Hilbert’s derivation is based on a central
mathematical result (Theorem I), which Hilbert initially described as the Leitmotiv
of the theory. According to this theorem the number of equations that can be obtained
from the variational integral is in fact smaller than the fourteen that one would expect
to attain on the face of it. More specifically, in the first printed version of the theory
Hilbert formulated the theorem as follows [15, 397]:

Theorem I. Let J be a scalar expression of nmagnitudes and their derivatives that is invariant
under arbitrary transformations of the fourworld-parameters, and let theLagrange variational
equations corresponding to the n magnitudes be derived from the integral

δ

∫
J
√

gdω = 0.

Then, in the system of n differential equations on n variables obtained in this way, four of
these equations are always a consequence of the other n - 4, in the sense that four linearly
independent combinations of the n differential equations and their total derivatives are always
identically satisfied.

The variational principle introduced above yields ten equations for the gravita-
tional potentials and four for the electromagnetic ones:

∂
√

gH

∂gμν
−

∑
k

∂

∂ωk

∂
√

gH

∂gμν

k

+
∑
k,l

∂2

∂ωk∂ωl

∂
√

gH

∂gμν

kl

= 0 (μ, ν = 1, 2, 3, 4)

∂
√

gH

∂qh
−

∑
k

∂

∂ωk

∂
√

gH

∂qhk
= 0 (h = 1, 2, 3, 4).

Hilbert denoted the left-hand sides of these equations as [√gH ]μν and [√gH ]h ,
and called them the fundamental equations of gravitation and of electrodynamics
respectively. Theorem I was obviously conceived with the intention of being applied
to these equations, thus leading to the claim that four of them are in fact consequences
of the other ten. In particular, Hilbert concluded, the four equations [√gH ]h = 0,
are a consequence of the ten gravitational ones, [√gH ]μν = 0. This latter conclusion
amounted, Hilbert suggested, to nothing less than a definitive explanation of the
intimate interconnection between the two kind of physical phenomena involved:

Based on the above theorem we can advance the following claim: in the already indicated
sense the electrodynamic phenomena are an effect of gravitation. By recognizing this, I
discern the simple and very surprising solution of the problem of Riemann, who was the
first to search for a theoretical connection between gravitation and light. Hilbert [15, 397–
398]footnoteHilbert was presumably referring here to a short paper on gravitation and light
taken from Riemann’s Nachlass [28, 532–38].
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Hilbert did not prove this theorem as part of his exposition of the theory, but he
claimed that the necessary proof would appear in a different place. As it happened,
however, the mathematical conclusions Hilbert drew from the theorem were erro-
neous: in fact, the validity of the theorem would imply that four among the equations
are dependent on the other ten, but this in nowaywarrants that precisely the four elec-
tromagnetic ones are dependent on the gravitational ones, as Hilbert asserted here.
Theorem I was an early version of what later came to be known as Noether’s theo-
rem (Noether 1918), but Hilbert’s conclusions went way beyond what the theorem
actually allows. Over the coming years, Hilbert’s theory gave rise to a vivid debate
among the Göttingen mathematicians, and the problematic status of his Theorem I
and its implications came to be at the focus of that debate [16].

The main point of connection between Mie’s and Hilbert’s theory comes to the
fore in the treatment of the concept of energy. This is also a point where we find
truly significant difference between the proofs and the printed version. In each case
Hilbert defined a certain magnitude that is a sum of formal expressions involving
the Hamiltonian H with some additional differential relations among the various
potentials, plus an arbitrary contravariant vector pl . The expressions defined in both
cases were quite different from each other, but in both cases Hilbert performed very
complex mathematical derivations that led to the conclusion that the magnitude in
question has zero divergence, thus justifying their choice as representing energy in
the theory.

A complete formulation of the theory required additional assumptions necessary
for determining the specific form of the world-function H. Hilbert stipulated that
the Hamiltonian be composed of two parts: H = K + L . The first term K accounts
for the gravitational part of the world-function. Like Einstein, Hilbert made K to
depend on the gravitational potentials and their first and second derivatives, in order
to produce a theory as close as possible to Newton’s. K is then, in fact, the Riemann
curvature scalar K = ∑

μ,ν gμν Kμν , where Kμν is the Ricci tensor.
The second term, L , is also an invariant, and it accounts for the electromagnetic

part. For simplicity, Hilbert assumed that it depends on qs , qsl and gμν , but not on
the derivatives of the latter. Using again a formal mathematical theorem (Theorem
II) —a correct result which he did not prove here, yet claimed that proving it would
be an easy task— Hilbert showed that, under the assumptions stated above, L must
satisfy the following relation:

∂L

∂qsk
+ ∂L

∂qks
= 0.

He thus concluded that the derivatives of the electromagnetic potentials appear in
the equations only as part of the relation:

Mks = qsk − qks, (∗∗)

fromwhich he deduced that, as a consequence of the basic assumptions of the theory,
L depends only on gμν, qs , and curl qs (but not simply on the derivatives of qs



Mie’s Electromagnetic Theory of Matter and the Background . . . 93

as originally assumed). Hilbert claimed that this conclusion was among the most
significant results of his theory, since, as he said, it “is a necessary condition for
establishing theMaxwell equations,” and here it was obtained as a direct consequence
of the assumption of general covariance alone. It is in passages like this, that Hilbert’s
reliance on Born’s version, rather than on Mie’s own presentation of the theory,
becomes directly manifest. In fact, we saw above that Born had stressed as a main
characteristic of the theory, that its Lagrangian depends only on differences which
are equivalent to those appearing in (**).

Based on Theorem II Hilbert also deduced the form of the electromagnetic energy
in the theory, which in the proofs was

−2
∑

μ

∂
√

gL

∂qμν
gμm = √

g
{

Lδm
ν − ∂L

∂qm
qν −

∑
s

∂L

∂ Mms
Mνs

}
. (∗ ∗ ∗)

Hilbert now claimed that in the limiting case —gμν = 0 (for μ �= ν), gμμ = 1 (i.e.,
when no gravitational field is present)— his expression for the stress energy tensor
equals that of Mie’s theory. This fact led him to conclude, with evident satisfaction,
that:

Mie’s electromagnetic energy tensor is none but the generally covariant tensor obtained by
derivation of the invariant Lwith respect to the gravitational potentials gμν in the limit. This
circumstance first indicated me the necessary, close connection between Einstein’s general
theory of relativity and Mie’s electrodynamics, and also convinced me of the correctness of
the theory developed here. (p. 404)

What Hilbert meant with these claims would be rather obscure, unless we recalled
that he was actually referring to Born’s rendering of Mie’s theory, rather than to
the latter’s own. In Born’s formulation, the stress energy tensor of Mie’s theory was
given, as we saw above, by Div S = 0. When this is specialized to the flat case, its
connection with (***) (or with the corresponding equation that Hilbert wrote in the
printed version) becomes apparent, although it still needs to be spelled out in detail.

6 Concluding Remarks

By the end of 1912, the question of the structure of matter had come to occupy a
central place among Hilbert’s scientific concerns. Mie’s theory of matter, however,
does not seem to have attracted his attention until Born reformulated it in terms
more akin to his scientific sensibilities. Eventually, Hilbert became convinced that
the theory showed good prospects for helping erect, based on it, a foundation for a
unified theory that would account for all physical phenomena. Hilbert’s interest in
Einstein’s theory came later. What startled Hilbert from Einstein’s ideas, and directly
motivated the consolidation of his own theory, was the possibility of embedding
Mie’s theory into a space-time formalism, that rendered evident a new, significant
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relation between gravitation and two important elements of the theory (the stress-
energy tensor and the electromagnetic Lagrangian). At the same time the metric
tensor was ostensibly put to the service of the explanation of the structure of matter,
which was Hilbert’s main focus of interest over the preceding years. Thus, inspired
by Einstein’s introduction of the metric tensor as a basic idea in the discussion of
gravitation, Hilbert was led to consider Born’s version of Mie’s theory from a new
perspective, under which new insights came to light that were not perspicuous in the
flat case.

It is noticeable that neither in Born’s nor in Hilbert’s articles we find any direct
or implicit reference, to Mie’s gravitational theory. As already mentioned the lat-
ter presented considerable difficulties that Mie himself never really came to terms
with. Born and Hilbert simply seem to have ignored this part of the theory in the
framework of their discussions. Mie’s gravitational theory was a scalar one and Born
did not attempt to find a way to embed it in his own tensor-like presentation of the
electromagnetic theory. Moreover, Born was most certainly aware of the criticism
directed towards the theory in the Vienna meeting of 1913 or in its sequel, and he had
no intention to counter this criticism when elaborating Mie’s electromagnetic theory
of matter. Then, in Hilbert’s article, Mie is only mentioned with reference to the
electromagnetic part of the theory presented. Hilbert did not generalize Mie’s scalar
gravitational theory into a tensorial, generally covariant version of it, but rather, he
used Mie’s electrodynamic account of matter as a basis for his own unified field
theory.

On the other hand, Hilbert’s idiosyncratic, and perhaps somewhat narrow, way of
approaching Einstein’s ideas precluded him from seeing the whole physical situation
involved here. Hilbert did not discuss in any detail the main physical questions that
had perplexed Einstein over the preceding years, and had delayed for so long the
formulation of his generally-covariant equations. Moreover, in those places where
Hilbert did elaborate on the physical implication of his theory, some of his claims
are quite problematic. For instance, after formulating the field equations and com-
menting on the relation between Einstein’s and Mie’s theories, Hilbert returned to
the interconnection—already suggested at the beginning of his argument— between
the electromagnetic and the gravitational basic equations, and in particular concern-
ing the linear combinations between the four electromagnetic equations and their
derivatives. These linear combinations Hilbert deduced to be of the following form:

∑
m

(
Mmr

[√
gL

]
m + qr

∂

∂ωm

[√
gL

]
m

)
= 0.

This formula embodied, in Hilbert’s view, “the exact mathematical expression of the
claim formulated above in general terms, concerning the character of electrodynam-
ics as a phenomena derived from gravitation” (p. 406. Italics in the original). But in
fact this conclusion turned out to be quite problematic and in the future versions of
the theory, Hilbert had to reconsider the significance of the relation between these
two kinds of physical phenomena.
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The opening passage of the printed version of Hilbert’s communication explains
the background to the theory by giving credit first to Einstein and only then to Mie.
It is remarkable that the proofs show the reverse order, as follows:
The far reaching and original conceptions by means of which Mie produced his
electrodynamics, and the tremendous problems formulated by Einstein, as well as
the penetrating methods he devised for solving them, have opened new ways to the
research of the foundations of physics.

In the events following the publication of his theory we find many reasons why
Hilbert chose to publish in the order he actually did. But in light of the historical
context described in the foregoing pages, it seems to me that the order chosen in the
original version (first Mie and only then Einstein) reflects more faithfully the way in
which he had actually arrived at his theory. The same can be said about the relative
importance that both components must be attributed as the actual motivations behind
his efforts.
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Hilbert and Einstein

Joseph Kouneiher and John Stachel

Abstract Highlights of the twenty-odd-year relationship between Einstein and
Hilbert are reviewed. We trace the relationship between the two men during this
period in the form of encounters, each of which characterizes a particular aspect of
their relationship. We begin with the encounter that never took place (1912) when
Einstein declinedHilbert’s invitation toGöttingen; the fateful encounter (1915–1916)
leading to a dispute over the final formulation of general relativity; The tragic-comic
encounter (1928–29) over editorship of the Annalen der Mathematik leading to what
Einstein called “The battle of the Frogs and Mice”; L’envoi (1932) Einstein’s final
letter of congratulations to Hilbert on his 70th birthday.

1 Introduction

On 25 November 1915, Einstein’s paper onMercury’s perihelion was published. The
calculations within this paper are related to the anomaly in Mercury’s motion that
had remained an unsolved puzzle in the context of the Newtonian theory of gravity.
The paper had been submitted only aweek earlier in turn, but it did not yet contain the
final gravitational field equations that would become the core of the general theory
of relativity.
That Einstein correctly worked out Mercury’s perihelion before arriving at the final
gravitational field equations indicates that the latter sit at the center of an intricate
theoretical web of mathematical tools, physical assumptions and techniques, which
together form general relativity. In the Mercury paper, Einstein used an approxima-
tion of what would later be called the Schwarzschild solution to the Einstein field
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equations to describe the gravitational field of the sun. The main idea he needed
was that the sun’s gravitational field could be modeled by the so-called metric ten-
sor. He then assumed that the gravitational field of the sun would be static, i.e. not
change over time; spherically symmetric; and fall off to zero infinitely far from the
sun. With these assumptions, he could find the approximation to a metric tensor that
adequately described the gravitational field of the sun. Einstein then assumed that
Mercury would move on the geodesics of this metric, i.e. on the straightest possible
lines allowed for by the spacetime geometry defined by the metric. Together, these
two assumptions made possible one of the most significant empirical confirmations
of the new theory of general relativity.
On November 19, 1915 Hilbert sent a polite letter in which he congratulated Einstein
“on overcoming the perihelion motion. If I could calculate as rapidly as you [...]”.
In fact Einstein did not calculate the result that rapidly. He presented his work on
the Perihelion Motion1 of Mercury on the November 18; but the basic calculation
was done two years earlier withMichele Besso in the Einstein-Besso manuscript [1].
Einstein transferred the basic framework of the calculation from the Einstein-Besso
manuscript and corrected it according to his November 11 field equations.
On November 25, 1915 Einstein submitted one of the most remarkable scientific
papers of the twentieth century to the Prussian Academy of Sciences in Berlin.
The paper presented the final form of what are called the Einstein Equations, the
field equations of gravity which underpin Einstein’s General Theory of Relativity.
Thus this year marks the centenary of that theory. Within a few years this paper
had supplanted Newton’s Universal Theory of Gravitation as our explanation of the
phenomenon of gravitation, as well as overthrown Newton’s understanding of such
fundamental concepts as space, time and motion. As a result Einstein became, and
has remained, the most famous and celebrated scientist since Newton himself.
Ten days prior to his submission of the final field equations, Einstein wrote to David
Hilbert that he was suffering from exhaustion and abdominal pains. His intense work
on general relativity and poor nutrition caused by the ongoing war had clearly taken
their toll on Einstein’s health. Still, when Einstein submitted the field equations on
25 November 1915, he was aware that he had reached his goal2: the discovery of a
law of gravity more accurate than Newton’s, consistent with the results of special
relativity, and indeed a generalisation of the latter theory. From the very beginning of
searching for this new law of gravity, Einstein took the lesson from special relativity
that mass and energy are equivalent as one of his starting points; or rather the idea that
both mass and energy have to produce gravitational fields. The main question was

1The success of Einstein’s calculation was also based on his November 11 theory. The condition√
g = −1, implied by the assumption of an electromagnetic origin of matter, was essential for this

calculation, which Einstein considered a striking confirmation of his audacious hypothesis on the
constitution of matter, definitely favoring this theory over that of November 4. Thus when writing
the Perihelion paper Einstein was still influenced by Hilbert’s electromagnetic theory of matter.
2The history of the long quest towards the final equations has been described by M. Janssen,
J. Norton, J. Renn, T. Sauer and J. Stachel, all of whom have been part of the Einstein Papers
Project editorial team. The winding story of the discovery of the Einstein Field Equations has
recently been summarized by Janssen and Renn in an article for Physics Today.
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what the resulting gravitational fields would be represented by, what the “left-hand
side” of the Einstein field equations would be, given that their “right-hand side” was
mass-energy.
Hilbert ended his November 19, 1915 letter by asking Einstein to continue and keep
him up to date on his latest advances but, he did not tell Einstein about a particularly
important talk he planned to give the day afterwards. Hilbert presented on November
20 a paper to the Göttingen Academy of Sciences, “The Foundations of Physics”,
including his version to the gravitational field equations of general relativity. Five
days later on November 25, Einstein presented to the Prussian Academy his version
to the gravitational field equations.
So, in 1915 Hilbert played a crucial role in the history of those equations. Indeed, it
was during Einstein visit to Gottengingen that Hilbert convinced him that the goal
of a fully general relativistic theory was achievable, something Einstein had nearly
convinced himself could not be done. Einstein returned to work, and byNovember, he
had found the field equations which give General Relativity its final form. However,
Hilbert also worked on the ideas Einstein had discussed with him and published a
paper discussing how Einstein’s theory fitted in with his own ideas on the role of
mathematics in physics.
In the same November 20 Hilbert submitted a paper written by him which included
the Einstein equations, derived from fundamental principles. Hilbert even sent Ein-
stein a copy which probably reached Einstein before he submitted his own paper.
Unfortunately, there was a confusion and dispute concerning the priority of the elab-
oration of first those equations.
Einstein felt himself to be the injured party in this short-lived priority dispute. He
complained to a friend that Hilbert was trying to “nostrify” his theory, to claim a
share of the credit. Einstein complained to Hilbert himself indeed, and some of the
changes made in proofs by Hilbert included the addition of remarks giving credit
for the basic ideas behind the theory to Einstein. However, Einstein tried not to let
proprietary feelings color his feelings of gratitude for Hilbert. He recalled well that
Hilbert had played an important role in encouraging Einstein to return to his theory
at a time when Einstein had, to some extent, given up on his original goals. On
December 20, 1915, he wrote to Hilbert:

There has been a certain resentment between us, the cause of which I do not want analyze any
further. I have fought against the feeling of bitterness associated with it, and with complete
success. I again think of you with undiminished kindness and I ask you to attempt the same
with me. It is objectively a pity if two guys that have somewhat liberated themselves from
this shabby world are not giving pleasure to each other. (translated and quoted in Corry et
al. 1997).

In 1990s Leo Corry3 made a remarkable discovery. He found a copy of the proofs of
Hilbert’s paper, with a printers stamp dating it to December 6, 1915. These proofs
show that Hilbert made significant changes to the paper after this date. In addition,
the proofs do not contain the Einstein equations. The proofs have been cut up here
and there (probably by the printers themselves as they worked), so it is possible

3See his contribution to this volume.
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that the equations would be there if we had the missing pieces. But it is also quite
possible that amidst the changes Hilbert made to the paper, he took the opportunity
to include the final form of the equations from Einstein’s paper. Indeed some of the
changes hemade after December 6 were to update his argument from earlier versions
of Einstein’s theory to the later version.

2 The Encounter That Never Took Place (1912)

On 30 March 1912, David Hilbert, the eminent Göttingen mathematician, wrote
Albert Einstein, then still living in Zurich:

Highly esteemed colleague,
I would be very happy if I had your theoretical works on gas theory and radiation theory
in my possession [Stachel’s translation – trying to reproduce the slightly pompous tone of
Hilbert’s German] [2, p. 439] 4

What Hilbert had in mind is made clear by Einstein’s letter of 4 October 1912 [2,
p. 502], politely declining Hilbert’s request that he deliver a lecture on the kinetic
theory of matter at Göttingen. Einstein gave two reasons: He had nothing new to say
on the subject, which was not quite true; and he was completely occupied with other
matters, which was quite true. The nature of these “other matters” is made clear in a
letter of 1 November 1912 from Arnold Sommerfeld to Hilbert:

Einstein is apparently so deeply mired in gravitation that he is deaf to everything else (see
[2, p. 506], note 6).

Well, not quite everything else. He made a trip to Berlin in April of that year, during
which he was offered a position at the Physikalisch-Technische Reichsanstalt. From
the people hemet during this trip and the institution named, it clear that, as in the case
of the Göttingen invitation, it was not primarily his work on relativity and gravitation,
but his work on the quantum theory of solids that led to the Berlin offer. He declined
this offer, but this Berlin trip was the beginning of a connection that a year later led
to his appointment as a full member of the Prussian Academy of Sciences, and his
subsequent move to the German capital.
The attractions of Berlin were not exclusively intellectual. During his 1912 visit, he
had renewed acquaintances with his uncle Rudolf Einstein (“the rich” as Einstein
called him), now retired, his wife Fanny; and their daughter Elsa Löwenthal, Ein-
stein’s cousin. Divorced in 1908, she and her two daughters had joined her parents
in Berlin. Thus began an affair that ultimately led to Einstein’s 1919 divorce from
his first wife, Mileva Marić, and marriage to Elsa.

4All Einstein documentsmentioned in this article can be found in J. Stachel et al., eds., TheCollected
Papers of Albert Einstein, Princeton U. Press (1987). Hereafter we use the notation CPAE X; Y,
with X the volume number and Y the document number.
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3 The Fateful Encounter (1915–1916):

Before getting to the first meeting between Hilbert and Einstein, we must mention
something that did not happen, but served to create a bond of sympathy between the
two: Neither agreed to sign the notorious “Manifesto of the 93 [German Intellectuals]
To the World of Culture.” This document tried to justify, in the name of German
“Kultur,” the German invasion of neutral Belgium in 1914, soon after the outbreak of
WWI. Einstein joined in a futile effort to launch a pacifist counter-manifesto “To the
Europeans.” It garnered only three signatures, andwas not published until much later.
Hilbert was not among the three, but Einstein valued him highly for his independence
of judgment, writing in mid-1915:

One is doubly overjoyed in these times by the few men, who stand quite above the situation
and do not let themselves be driven by the sad currents of the time. One such is Hilbert, the
Göttingen mathematician. Hilbert now regrets doubly, as he told me, out of negligence not
having cultivated more international connections (AE to Heinrich Zangger, 7 July 1915, [3],
pp. 144–145).

The occasion for this letter was an account of Einstein’s first meeting with Hilbert:

I spent a week in Göttingen, where I learned to know and love him [Hilbert]. I gave six two-
hour lectures there about my now very much clarified gravitational theory and experienced
the joy of completely convincing the mathematicians (ibid.).

Einstein’s joy at the sympathetic reception of his work by the Göttingen mathemati-
cians, whom he had earlier scorned for what he regarded as mathematical pedantry,
contrast sharply with his disappointment at the response of his colleagues in physics:

Physicist humanity reacts rather passively to the gravitational work Laue is inaccessible to
arguments of principle, Planck also is not, Sommerfeld is a bit. A free, unconstrained outlook
is really alien to the (adult) German (Einstein to Michele Besso, after 1 January 1914, [2],
pp. 588–589).

At this point, a word of caution is necessary. Although Einstein is already beginning
to speak of “general relativity” around this time, the theory he discussed in Göttingen
was not the one that we now denote by that name. Rather, it was a variant of the so-
called Einstein-Grossmann Entwurf theory, first formulated in 1912–1913, the field
equations of which are not generally covariant. As we shall see, it was only in four
papers dating from the late fall and early winter of 1915 that Einstein propounded the
generally-covariant theory that we all know and (at least some of us) love as general
relativity.
Among the enthusiasts attending Einstein’s Göttingen lectures was Hilbert. He owed
much of his already-considerable fame to his rigorous axiomatization of Euclidean
geometry, and for several years had been attempting to apply his axiomatic method
to the foundations of physics (see Corry [4]). With the help of Max Born, then a Pri-
vatdozent at Göttingen, he was working on Gustav Mie’s electromagnetic theory of
matter. On the basis of a set of non-linear (and non-gauge-invariant) electromagnetic
equations, this theory aimed to offer a field-theoretical explanation of the existence,
structure and stability of the electron. Hilbert conceived the idea of enlarging Mie’s



102 J. Kouneiher and J. Stachel

program by combining it with Einstein’s. He wanted to conjoin Mie’s electromag-
netic four-potential qi with Einstein’s ten gravitational potentials gμν in a set of
non-generally covariant field equations to produce what we would now call a unified
field theory of gravitation and electromagnetism (see Renn and Stachel [5]).
While Hilbert was embarking with great enthusiasm on this program, Einstein was
becoming more and more unhappy with the Einstein-Grossmann theory; and in mid-
1915 returned to his earlier search for a generally-covariant gravitational theory.
But the common ground between Einstein and Hilbert’s programs soon led to some
friction between the twomen, with Einstein accusingHilbert of wanting to “nostrify”
[i.e., make his own] Einstein’s work. We shall not here rehearse the details of the
dispute except to note that it was quickly and happily resolved (see Stachel [6]).
On November 26, 1915 a day after Einstein presented the final version of the field
equations he wrote his close friend Zangger:

The general relativity problem is now finally dealt with. The perihelion motion ofMercury is
explainedwonderfully by the theory. [] The theory is beautiful beyond comparison. However,
only one colleague has really understood it, and he is seeking to clearly “nostrify” it (Abra-
hams expression5). In my personal experience I have hardly come to know the wretchedness
of mankind sometimes better than this theory and everything connected to it. But it does not
bother me [8].

On 5 December 1915 Hilbert and four colleagues proposed Einstein for membership
in the Royal Society of Göttingen, to which he was duly elected on 18 December.
Two days later, in a letter thanking Hilbert, Einstein wrote:

I am taking advantage of this opportunity to tell you something else, which is more important
to me. There has been a certain strained atmosphere [Verstimmung] between us, the cause
of which I shall not analyze. I have fought against the feeling of bitterness associated with it,
and indeed with complete success. I think of you again with unclouded friendliness and beg
you to attempt the same with me. It is objectively too bad if two real guys, who have made
something out of this shabby world, should not mutually enjoy each other (20 December
1915, [3], p. 222).

It is perhaps worth noting that Hilbert did not reply to this letter, and indeed had no
further correspondence with Einstein until 27 May 1916, when he responded to a
post card from Einstein with some questions about Hilbert’s paper on his new theory,
which had just been published. Hilbert invited Einstein to visit Göttingen again and
staywith him; but in spite of several invitations over the next few years, this third visit
to Göttingen never took place, perhaps because of Einstein’s poor health during the
last years of WWI (he had a stomach ulcer). However, they continued to correspond
over issues connected with Hilbert’s paper.
As Jürgen Renn and Stachel have indicated [5], Hilbert made several mathematical
errors in the course of work on his new theory. Some have questioned whether a great

5In 1912, Max Abraham had blamed Einstein’s theory of relativity and Einstein as well. Abraham
thought thatEinstein borrowed expressions fromhis newgravitation theory.OnMarch26, 1912,Ein-
stein wrote to Michele Besso : “Abraham’s theory was created of the top of his head, i.e., from mere
mathematical beauty considerations, torn off and completely untenable. In fact,“nostrification” was
Einstein’s expression and not Abraham’s” [7]. That was almost Abraham’s opinion of Einstein’s
theory, except for the mathematical beauty.
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mathematician like Hilbert could really have made the mistakes we suggested. We
shall let another great mathematician, Gian-Carlo Rota, answer. In a section of Rota
[9] entitled “Do not worry about your mistakes,” he writes:

When the Germans were planning to publish Hilbert’s collected papers and present him with
a set on the occasion of one of his later birthdays, they realized that they could not publish the
papers in their original versions because they were full of errors, some of them quite serious.
Thereupon they hired a young unemployed mathematician, Olga Taussky-Todd, to go over
Hilbert’s papers and correct all mistakes. Olga labored for three years; it turned out that all
mistakes could be corrected without any major changes in the statement of the theorems.
There was one exception …At last on Hilbert’s birthday a freshly printed set of Hilbert’s
collected papers was presented to the Geheimrat. Hilbert leafed through them carefully and
did not notice anything (p. 201).

We might add: or at least he did not say anything!

4 The Tragic-Comic Encounte—(1928–29):

There is a special folder in the Einstein Papers that bears the following caption, typed
by Helen Dukas, his assistant:

Professor Einstein wanted this correspondence kept in a special folder under the title: Der
Frosch-Mäuser Krieg

Our account is based in large part on the contents of this folder.

We remind you that “The Battle of the Frogs andMice” is the name of a Greekmock-
epic poem, Batrachomyomachia, dating from classic times, which was written to
make fun of the style and content of real epic poems, such as the Iliad (see Chapman
[10] for a classic English translation). Evidently, even in ancient times there were
scoffers and cynics who used satire as their preferred weapon.
At what “epic” struggle was Einstein scoffing? It was the well-known (to those
who know it well!) controversy over the foundations of mathematics raging in the
nineteen-twenties between Hilbert, the fighting formalist and Luitzen Egbertus Jan
Brouwer, the ingenuous intuitionist.

The Brouwer-Hilbert debate grew increasingly bitter and turned into a personal feud. The
last episode was the “Annalenstreit” [battle over the Mathematische Annalen –JS], or, to
use Einstein’s words, “the frog-and-mouse battle.” It followed the unjustified and illegal
dismissal of Brouwer from the editorial board of the Mathematische Annalen by Hilbert in
1928 and led to the disbanding of the old Annalen company and the emergence of a new
Annalen under Hilbert’s sole command but without the support of its former chief editors,
Einstein and Carathéodory [11, p. 3].

We will not enter into mathematical or philosophical aspects of this battle, but shall
only touch on its human side and in particular Einstein’s role in it. This seems
especially worthwhile since this episode is not even mentioned in any of the many
Einstein biographies we consulted.
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By the end of 1927 Brouwer’s program of re-constructing mathematics had run
aground. He lost almost all international support, especially the occasion to install
a mathematics institute in Amsterdam. Hilbert’s annextion of meta-mathematics
“without mention of autorship”, and his public attack on Brouwer considered as
direct attack against Intuitionism. Brouwer emotional reaction concerning the pater-
nity claim of the notion “meta-mathematics” and the improvements in the formalist
program due to his work of the validity of the principle of the Excluded Middle was
[12]:

Formalism has received nothing but benefits from Intuitionism and can expect further bene-
fits. The formalist school should therefore show due recognition instead of war-mongering
against Intuitionism in sneering tones, never once making proper reference to authorship.
Moreover, Formalism should remember that in the Formalist structure so-far nothing math-
ematical has been achieved (we are still waiting for a proof of the non-contradictority of its
axion system), whereas Intuitionism pn the nasis of its constructive definition of sets and the
Fundamental Property of Finite Sets has already erected new structures in real mathematics
of unshakable certainty. [13, p. 4]

The controversy concerning the International Congress of Mathematics at Bologna
in September 1928 was the last stages in the semi political battle between Hilbert ad
Brouwer.
In 1928, Brouwer public call on all Germanmathematicians to boycott the Congress,
was interpret by Hilbert as interference in German affair and an attempt to prevent
him from attending the congress as head of the German delegation. Notice, that
Hilbert’s address to the Bologna Congress was his last public appearance before
retirement.
However, Hilbert did not consider the matter was closed. For him those events show
up Brouwer’s ambition and personal influence. Hilbert fearing an eventual influence
on the editorial Board of the Mathematisch Annalen, he dismissed Brouwer from the
editorial Board without the agreement of the other chiefs editorial board, Einstein
and Carathéodory.
The editorial board was of course surprised, but they were anxious to avoid any
unpleasantness. Carathéodory, ask Laren to persuade Brouwer not to take immediate
action, because “Hilbert is desperately ill and will regret his step in a few weeks”.
Brouwer felt that his co-editors were prepared to sacrifice him. However, to him the
dismissal from the Editorial Board was an injustice and the end of his career.
HowdidEinstein become involved in the controversy? It started in 1919with a gesture
of friendship and confidence onHilbert’s part: He invited Einstein to join the editorial
board of theMathematische Annalen, then the premier Germanmathematics journal.
In 1928, as a result of increasing tension between Hilbert and Brouwer, Hilbert wrote
to the other editors of the Annalen, asking their sanction for the removal of Brouwer
from the editorial board. At first Einstein tried to pass off the matter with a joke:

Herr Brouwer is an involuntary champion of Lombroso’s theory of the close connection
between genius and madness (Einstein to Hilbert, 19 October 1928).

He refused to sign the letter of expulsion and, in a letter to Constantin Carathéodory,
a fellow member of the board, attributed this move to a momentary fit of pique on
the part of Hilbert.



Hilbert and Einstein 105

It would surely be best to pay no attention at all to this Brouwer-matter. I would never have
thought that Hilbert could be capable of such outbursts of emotion (Einstein to Caratheodory,
19 October 1928).

Caratheodory replied in confidence, explaining to Einstein that the expulsion seems
to have been a carefully calculated move on the part of Hilbert and several others
board members. Caratheodory added that he was resigning from the board, but asked
Einstein to keep his resignation secret for the present because he did not want to
appear to be taking sides against Hilbert.
Carathéodory felt so strongly about this “dishonorable affair” that he left Europe and
accept a chair at Stamford.
Blumental and Courant were more concerned about Hilbert’s reputation and tried to
persuade Carathéodory to accept and spread their agreed version :

Hilbert feared that Brouwer’s personality might be damaging and dangerous for the future
of the Annalen. It is not “an interpretation constructed after the event” if one emphasizes
this factual motive, even if Hilbert’s action at first might give a different impression. For
Hilbert’s sake we cannot allow a version of his reasons to become public which does not do
him full justice. If you already accept such a version what can we axpect from the public at
large? (Courant to Carathéodory, 23.12.28)

In mid-1929 Max Born intervened in the ongoing dispute, hoping to induce Einstein
to side with Hilbert, largely on the grounds that Hilbert was a dying man and his
last days should not be clouded by this controversy (Max Born to Albert Einstein,
2 August 1929). Curiously, Born did not include Einstein’s letter of refusal in his
collection of their correspondence, published thirty-odd years later.
Hilbert was indeed seriously ill at the time, but recovered and did not die until 1943,
at the age of 81, and then it was from complications of a broken arm.
The last item in the “Frog-Mouse War file” is Einstein’s reply to a 1930 letter from
Jacques Hadamard, the eminent French mathematician, with whom he was on very
friendly terms. After his expulsion from the Annalen, Brouwer had approached
Hadamard, among others, to join him in founding a new mathematics journal, and
Hadamard turned to Einstein for advice. Einstein replied:

It was a vile dispute between Brouwer and Hilbert, for which nevertheless in my opinion
Hilbert bears the main guilt (15 November 1930).

Nevertheless, in spite of Brouwer’s ill treatment by Hilbert and his good works
and intentions, in view of Brouwer’s well-known and well-deserved reputation for
querulousness Einstein advised Hadamard to keep hands off.

5 L’envoi (1932):

Luckily, we can end our story on a more pleasant note. The last letter from Einstein
to Hilbert is dated 26 February 1932, congratulating him on his seventieth birthday:
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If I cannot allow myself to follow you along all your daring avenues of thought, yet I am
able to form for myself a picture of the strength and beauty of your thought, and am obliged
to you for sessions of cloudlessly beautiful experience.

This is a good place to end our tale, before the horrors of the Third Reich finally
engulfed Germany—along with almost all the rest of Europe—only ending in the /it
Götterdämmerung of 1945, which Hilbert was blissfully spared.
Although known to be upset by the actions of the regime, and seeing many of his
closest collaborators such as Max Born, Richard Courant and Emmy Noether forced
into exile, Hilbert stayed on at Göttingen until his death in 1943. Einstein of course
left Germany in 1933, never to return and, as far as is known, never again to be in
direct contact with Hilbert.
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Grothendieck’s Unifying Vision
of Geometry

Colin McLarty

If one thing has fascinated me in mathematics since childhood, it
is this power to identify in words, and perfectly express, the
essence of certain mathematical things which on first approach
present themselves as elusive or mysterious beyond words.

—A. Grothendieck Récoltes et Semailles p. 14

These notes attempted to show something that was still very
controversial at that time: that schemes really were the most
natural language for algebraic geometry and that you did not
need to sacrifice geometric intuition when you spoke “scheme.”

—David Mumford The Red Book (1988, p. VIII)

Abstract Grothendieck’s “vast unifying vision” provided new working and con-
ceptual foundations for geometry, and even led him to logical foundations. While
many pictures here illustrate the geometry, Grothendieck himself favored apt words
and commutative diagrams over pictures and did not think of geometry pictorially.

Geometry, foundations, and the scope of Grothendieck’s vision
Geometry has touched on number theory at least since the Babylonians linked
trigonometric calculations to integer solutions of a2 + b2 = c2 some 4000years ago.
But the links went little beyond that until Fermat hinted at much more. His follow-
ers were few, albeit stellar, including Carl Friedrich Gauss, until André Weil put
geometrization of arithmetic at the top of the agenda for pure mathematics [51, 52].
Weil simultaneously traced his own vision back to Leopold Kronecker at mid-19th
century, and tied it to cutting edge topology.

By 1950 the project was led by the leaders of Bourbaki: Weil, Claude Chevalley,
and Jean Dieudonné. It was closely tied to Emil Artin, Bartel van der Waerden,
Oscar Zariski, Henri Cartan, Samuel Eilenberg, Saunders Mac Lane, John Tate—
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and the cognoscenti all knew the rising star Jean-Pierre Serre. Serre won a 1954
Fields Medal, at age 27 the youngest Fields Medalist ever, and around that year he
recruited Grothendieck to the project.

The geometric aspect has not always been evident. Mumford rightly says even
insiders did not all see the geometry of Grothendieck’s schemes at first. And even
today many mathematicians are not too comfortable with derived functor cohomol-
ogy as geometry. No such doubt plagued Grothendieck:

This vast unifying vision can be described as a new geometry. It seems to be what Kronecker
dreamed of in the last century. But reality (which a bold dream may let us guess or foresee,
and encourage us to discover) is always richer and more resonant than even the most reckless
or profound dream. (ReS [21, p. P28])

The vision is so vast and so unifying as to reach foundations in three senses:
working, and conceptual, and even logical foundations.

Working foundations are the specific tools and theorems which practitioners all
master and routinely use. So line integrals and the Cauchy integral theorem have long
been theworking foundation of complex analysis. In 1950 theworking foundations of
algebraic geometry were completely up in the air. The established theory of varieties
over the complex numbers, or indeed over any algebraically closed field, was clearly
too narrow for the number-theoretic goals. Many generalizations were on offer. None
was established.

Conceptual foundations orient somework though theymight not bewidely known
in detail andmight not evenbe fully developed.Weil hinted at a conceptual foundation
for his geometry when he posed his famousWeil conjectures as an astonishing anal-
ogy between number theory and cohomology theory in topology [51, pp. 498, 507].
So it would not be a geometry of distances and rigid figures. It would be a geometry
of continuity, connectedness, dimension, and genus, all described in Sect. 2. But as
Grothendieck says:

No one had the least idea how to define such a cohomology and I am not sure anyone but
Serre and I, not even Weil if that is possible, was deeply convinced such a thing must exist.
(ReS [21, p. 840])

The conceptual foundation ofGrothendieck’s geometry beganwhenhe fundamen-
tally re-conceived cohomology, in his Tôhoku paper (1957), by axioms for Abelian
categories and derived functors. His unprecedented easy agile use of functors sim-
plified and extended the links between topology and algebra. And that is a radi-
cal understatement. He used no topological or algebraic particulars of any existing
cohomology theory. Of course the particulars can be fitted to this framework for
use towards particular ends. This had an immediate, concrete pay-off as it led to the
Grothendieck-Riemann-Roch Theorem [6, 7]. But the axioms are far simpler than
any particulars. Grothendieck was sure this was the right way to think of all existing
cohomology theories and all that would exist—including some future cohomology
adapted to the Weil conjectures.

Today Grothendieck’s derived functor cohomology is standard in the conceptual
foundations of algebraic geometry. Its concepts and central theorems are widely
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taught and used. But some of its proofs use tools most geometers never need in their
further work. So textbooks use those theorems without proof. The still-leading text
on cohomological algebraic geometry does exactly this in “the technical heart of
the book” [25, p. xiv], as do its more recent rivals. There is a complication here
concerning logical foundations, to which we return at the end of this section.

Soon after Grothendieck clarified cohomology, his schemes became the standard
working foundation of algebraic geometry. Some of the audience at the Stockholm
International Congress of Mathematicians thought Serre was being a bit narrowly
Parisian in his definition of algebraic geometry: “I take this term in the sense it has
had for several years now: the theory of schemes” [47, p. 190]. Within a few years
schemes were the world-wide standard spaces for all algebraic geometry beyond
the classical theory of complex varieties—and for advanced theorems on complex
varieties. Mumford’s photocopied lecture notes played a big role in that as they
circulated for years before being printed as [41].

Grothendieck got schemes along with a full conceptual foundation:

The two crucial driving ideas (idées forces) in launching and developing the new geometry
were that of scheme, and that of topos. Appearing almost at the same time and in close
symbiosis with each other, they were as if a single sinew in the spectacular flight of the new
geometry, and this from the very year they appeared. (ReS [21, p. P31])

Schemes were not only meant to contain arithmetic information but to reveal
it by supporting a suitable cohomology theory. Grothendieck made that happen by
treating a scheme as a generalized topological space and more precisely as a topos.
Section4 goes into this.

Grothendieck was bitterly aware “it has been good manners in ‘high society’ to
look down on those who dare pronounce the word ‘topos’ ” (ReS [21, p. 182]).1 This
repugnance is linked with logical foundations because Grothendieck’s idea of topos
poses problems for naive set theory. So do his ideas of Abelian category, derived
functor, and a fortiori their characterizations by universal properties, all of which
are standard textbook material today. But the issue is associated with topos theory
since Grothendieck wrote about it in Théorie des Topos et Cohomologie Etale des
Schémas [3]. Grothendieck cared to have a precise logical foundation. So he asked
Pierre Samuel2 to write 30 pages on set theoretic universes, signed N. Bourbaki, as
an appendix to [23]. Many geometers regret this.

Grothendieck used a strong logical foundation precisely to assure rigor without
needing to check details at each step. He did not worry about finding the weakest
logic for his tools. Section5 gives the current state of the art on that. Meanwhile
Connes’ contribution to this volume draws on the topos perspective in geometry
without laboring the logical foundations [10].

1While this holds of many geometers, [14] puts toposes among Grothendieck’s best ideas. Only
Deligne emphasizes what Grothendieck also knew: you can think with topos intuitions while offi-
cially using only small sites in proofs. Cf. [40, p. 263].
2This information from Pierre Cartier, discussion February 2015.
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1 Pictorial Visualization I: Schemes and Crystals

Mumford [41] includes famous drawings of arithmetic schemes. He gave graphic
geometric intuition to things like split and ramified primes, and others now use his
conventions e.g. [15]. It seems Grothendieck did not draw pictures of schemes.

Deligne draws pictures of what Grothendieck taught him. When I asked if
Grothendieck also drew them, Deligne paused and looked up as if searching the
past. Refocussing his eyes on the present, he said:

In talks, no, I don’t think so. In speaking with him he would easily recognize them and
communicate by them but he did not draw them. (Conversation, IAS, March 10, 2005)

Deligne is so visual he looked 40years back to see if his teacher was drawing
pictures! On the other hand, while Grothendieck drew commutative diagrams, and
our Sect. 3.1 describes two compass drawings by him, his algebraic geometry was
little pictorial in his own mind. Grothendieck’s geometry, in his own mind, captured
geometric intuitions in words. The difference in mental picturing mattered so little
to their communication that Deligne hardly noticed it until asked.

2 This Geometry Before Grothendieck

It becomes substantially easier to conceive of a complex variable extended over a connected
two dimensional domain when it is linked with spatial intuition. [42, p. 3]

2.1 Genus

Bernhard Riemann geometrized complex analysis by sometimes ignoring details
of differentials and integrals, in favor of continuous maps between surfaces. For
example he studied integrals such as

∫ t

0

1√
(1 − z4)

dz

by considering continuous maps to a sphere from a torus.
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He trivially observed the sphere can represent the complex plane plus a point at
infinity. He saw far from trivially how a torus wrapped twice around the sphere can
represent the two values±(1 − z4)1/2 at each point z. He saw the values are organized
the same way for any equation y2 = P(z)with a degree 3 or 4 polynomial P(z)with
no multiple roots. The values ±P(z)1/2 at each point z make a torus wrapped twice
around the sphere.

Riemann saw howmuch complex analysis follows from rudimentary algebra plus
geometric ideas like 2-dimensionality and connectedness. Today we say the mere
topology of a Riemann surface S determines much about analysis on S.

One key idea was the genus of a surface. A sphere has genus 0, a torus has genus
1. An n-torus, which is like n copies of a plain torus combined into one surface, has
genus n. Here are a 2- and a 3-torus:

These correspond to higher degree polynomial equations Q(y, z) = 0 on y, z.
Geometric intuitions work here. You would not expect to make a 2-torus cover a

3-torus. The two handles of the first can only wrap around two handles of the other.
You would not expect to map a 3-torus into a 2-torus, without collapsing one of
the handles or twisting two of them together. These intuitions lead to the Riemann-
Hurwitz formula putting sharp limits on maps between Riemann surfaces, and thus
on complex analysis for algebraic functions in all degrees. See the vividly pictorial
“scissors and paste” proof by McKean and Moll [35, p. 40].

2.2 Counting Solutions Without Finding Them

All calculus students know a continuous function f : [0, 1]→R with f (0) < 0 <

f (1) has f (x) = 0 for some 0 < x < 1. There could be any number of solutions,
even infinitely many. But if there are only finitely many then stronger conclusions
follow.

When there are a finite number of solutions f (x) = 0 then each one has a sepa-
rating interval. That is an interval x ∈ Ux ⊆ [0, 1] such that x is the only solution in
Ux . Figure1 illustrates the three things that can happen:

(1) x is a rising solution if all y ∈ Ux with y < x have f (y) < 0; and all y ∈ Ux

with x < y have 0 < f (y).
(2) x is a falling solution in the opposite case.
(3) x is a tangent solution if all y ∈ Ux have f (y) ≤ 0, or all have 0 ≤ f (y).

A numerical conclusion follows:
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x0

Fig. 1 Three graphs with f (0) < 0 < f (1)

(1) There is one more rising solution to f (x) = 0 than falling, and so
(2) if there are no tangent solutions, there is an odd number of solutions.

One more thing matters here. The middle example in Fig. 1 has one tangent solu-
tion f (x0) = 0. Slightly raising that graph at x0 will split the solution in two, and
a slight lowering will eliminate it as a solution. Tangent solutions are not stable.
Indeed, no graphic can assure the apparent tangency is real. Finer resolution might
show the curve crosses slightly over the axis there, or slightly undershoots.

More sophisticated topology gives the Lefschetz fixed point theorem. See the deft
popularization by Atiyah [4]. A fixed point x ∈ M for a map g : M→M from a space
M to itself is a solution to g(x) = x . Here M could be any of the n-tori discussed in
Sect. 2.1 or some higher dimensional manifold.

A givenmap g : M→M mayhave infinitelymanyfixed points. But if it has finitely
many then the fixed point theorem together with some purely topological information
about g puts limits on the number without in any way determining where the fixed
points are. Given some stability assumptions it may even give the exact number of
fixed points.

2.3 Local and Global

Cohomology expresses the basic geometric ideas of connectedness, genus, and
dimension in terms of the passage between local and global.3

2.3.1 Constant Functions and Contour Maps: Dimension and Genus

A real valued function f : M→R on any space M is locally constant if each x ∈ M
is surrounded by some open ball x ∈ U ⊆ M with f constant on U. Of course if

3The following is based on de Rham cohomology. Local contour maps represent closed 1-forms,
while actual contour maps represent exact 1-forms.
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Fig. 2 Addition of local contour maps on a square

x, y ∈ M are linked by some chain of overlapping balls, with f constant on each of
those balls, then f (x) = f (y).

•x
•y

It is intuitively plausible, and it is a theorem in topology, that M is connected if
and only if every locally constant function on M is actually constant. If M is a union
of disjoint open parts M1 ∪ M2, so M is not connected, then a locally constant f
could have f (x) = 0 for all x ∈ M1 and f (x) = 1 for all x ∈ M2.

An example one step richer was in fact a key inspiration for the new ideas. Figure2
shows three square charts. Think of them as contour maps of a square of ground,
except that the lines do not represent any specific land elevation. They represent rise
in elevation with small arrows to indicate the direction of rise.4 The leftmost chart
shows the land rising two feet from south to north. The middle shows the land rising
two feet from west to east. The rightmost is a sum of those, with the land rising a
total 4 ft from southwest to northeast.

Now look at an annulus, the plane region between two circles. Each chart in Fig. 3
makes sense locally. Each tells how the terrain rises or falls in any small region. Call
them both local contour maps.

The left hand chart α in Fig. 3 could be contour lines on an annular region in a
topographical map. Going once around α, in either direction, means rising a total of
three feet and falling a total of three feet and so a net change of 0. But chart β on
the right makes no sense globally. Going around that one once, counterclockwise,
leaves a net rise of 6 ft. The terrain cannot meet itself! Call α but not β a contour
map; or an actual, global contour map in contrast to a local contour map.

4The geometric point is that, like level lines on a topographical map, contour lines never cross or
merge with each other; and never start or stop except at the edges of the chart.
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Fig. 3 Two local contour
maps on an annulus

α β

This is already enough to say something about dimension. A space M has coho-
mological dimension at least 1 if some local contour map on M is not global. So the
annulus has cohomological dimension ≥ 1.

The 1-dimensional cohomology of any space M measures how many essentially
different ways a local contour map on M can fail to be global. On the annulus there
is only one way: the total change in elevation on any route around the annulus. This
rests on a salient fact.

(1) Every local contour map on an annulus that gives total elevation change 0 on
some round trip around the annulus is global. It could actually be the contour
lines on a topographical map.

Combining this with the idea of adding contour maps illustrated in Fig. 2 gives the
key to algebraizing cohomology:

(2) For every local contour map γ on an annulus there is a unique real number iγ ,
called the period of γ, such that the difference γ − (iγ · β) is global.5

The parameter iγ in fact 2 has been called the period of γ at least since Riemann.
The period iγ is not unique toγ of course, but it does uniquely identify the equivalence
class of γ in the group of local contour maps modulo actual, global contour maps
on the annulus. This is the 1-dimensional cohomology group of the annulus, H1(A).
By definition it is the quotient group, and by fact 2 it is isomorphic to the additive
group of real numbers R.

2.3.2 Cohomology Groups and the Lefschetz Fixed Point Theorem

The existence of local but non-actual contour maps reveals the hole in the annulus.
This works for other spaces as well. Consider the local contour maps in Fig. 4. α,β
on a torus, and their sum α + β. Dashes show the contour lines passing behind the
torus.

Local contour map α reveals the hole in the center of the torus because, using α,
a round trip counterclockwise around the outermost edge of the torus means a total
rise in elevation of 1 foot. So α is not an actual contour map. A trip vertically around
the tube shows β is not either—it surrounds the hole inside the hollow tube. Either

5Periods are often defined as line integrals, iγ = ∮
γ. This agrees with our definition when the line

of the integral goes once around the annulus and α has
∮

α = 1.
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one of these trips also works to show α + β is not global. And two salient facts for
the torus correspond to the two given above for the annulus:

1′ Every local contour map on a torus that has total elevation change 0 on both the
round trip around the periphery of the torus and the vertical trip around the tube
is global.

2′ For every local contour map γ on a torus there are unique real numbers iγ, jγ
such that the difference γ − (iγ · α + jγ · β) is global.

The 1-dimensional cohomology group of the torus, H1(T ), is defined as the quotient
group of local contour maps modulo the actual, global ones. Fact 2′ shows it is
isomorphic to the additive group R

2 of real number pairs 〈i, j〉.
The local contour maps α,β on the usual torus have analogues on each handle of

the n torus:

The 1-dimensional cohomology group of the n-torus, H1(T n), is defined by the
quotient group of local contour maps modulo the actual, global ones. It is isomorphic
to the additive group R

2n of 2n-tuples of real numbers. The genus of a Riemann
surface is characterized by its cohomology.

Higher dimensional cohomology groups Hk(M) for any space M are defined
as quotient groups measuring how various other constructions can work locally on
M while failing to work globally. They suffice to describe the dimension of M,
higher dimensional analogues of genus, and everything needed to state and prove the
Lefschetz fixed point theorem sketched in Sect. 2.2.

2.3.3 Sheaves, the Not at All Secret Key

The systematic way to define local structures on a space M is to define compatible
global structures on open subspaces U ⊆ M of M. The local but non-global con-
tour map on the annulus in Sect. 2.3.1 is covered by global contour maps on these
overlapping parts.

↑
↑
↑↑

↑
↑

↑
↑
↑ ↑

↑
↑
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βα α β

Fig. 4 Local contour maps on a torus

On each part the ground simply rises three feet from one end to the other. Where
they overlap, both agree the ground does not rise.

Sheaves collect all local structures of some kind, on one space M, by organizing
the actual structures of that kind on all open subsets U ⊆ M of M.6 There are now
as in 1950 two materially different definitions which are equivalent in effect.

One says a sheaf F is a local homeomorphism F : E→M . That means F stacks
some space E above M so that all small enough open parts U ⊆ E map isomorphi-
cally onto their images. For example a spiral E maps to a circle M :

�→

�→

�→

�→

M

E

The other says a sheaf F on M assigns some structure F(U ) to each open subset
U ⊆ M. The relevant sheaves here are sheaves of Abelian groups. So the sheaf of
continuous functions on M, or O0

M , assigns to each open subset U ⊆ M the addi-
tive group O0

M(U ) of all continuous functions f :U →R. Here addition is defined
pointwise: for each U ⊆ M the sum of any f, g :U →R is defined by

For all x ∈ U, ( f + g)(x) = f (x) + g(x).

The sheaf of contour maps on M would assign to each open subsetU ⊆ M the group
of all actual contour maps on U, with addition as suggested in Figs. 2 and 4. One
precise version would be the sheaf of 1-forms on a manifold M.

Looking ahead to Sect. 3.2.1 noteO0
M (M) is the set of global real-valued functions

on M . The sheaf of contour maps on M would assign to M itself the set of global
contour maps on M.

Both formal definitions of sheaf are too long to give here. Grothendieck in ReS
[21] merely analogizes sheaves to “meter sticks”measuring spaces and does not even
name examples (p. P38). After all, his Tôhoku paper (1957) worked with sheaves in
terms of simple relations in categories of sheaves rather than details of how sheaves

6[32, pp. 252ff] has a gentle introduction, for more see Tennison [49].
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are made. He had no reason to choose between sheaves as local homeomorphisms
F : E→M and sheaves as assignments of values F(U ). The two give equivalent
categories of sheaves over any space M. See Sect. 3.2.

3 Cohomology in Grothendieck’s Words

3.1 Pictorial Visualization II: Compass Drawings

Grothendieck’s experience with a compass relates more to philosophy than to
geometry:

I was interned in the concentration camp of Rieucros (near Mende). It is there that I learnt,
from another prisoner, Maria, who gave me free private lessons, the definition of the circle. It
impressed me by its simplicity and its evidence, whereas the property of “perfect rotundity”
of the circle previously had appeared to me as a reality mysterious beyond words. It is at this
moment, I believe, that (without being able to formulate it in these terms) I caught a glimpse
of the creative power of a “good” mathematical definition. [22, p. 280].

Grothendieck explains he was drawing six-fold rosettes with a compass, as in the
left hand figure above. This divides the circumference of the central circle in six parts
with endpoints one radius apart. His schoolbook said the circumference is 2πR, so
he concluded π = 3 even though the book said it was around 3.14:

As is typical, I discovered my error (which was to confuse the length of an arc with that of
the chord connecting its endpoints) when I expressed my astonishment at the ignorance of
my predecessors to someone else (a prisoner Maria who gave me free individual lessons in
math and French) as I was about to show her why the circumference must be 6R. (ReS [21,
p. 263])

The contrast of arc and chord certainly has a visual component, but drawing the
arc had not made him notice it. Maria’s definition of the circle did. Telling the story
years later Grothendieck concluded a child’s ability to question authority is precious,
as is the ability to recognize a mistake.

Around the time he recorded that story, he used the same compass method to
draw the “12 petalled flower” or “sun” above on the right.7 He labelled its vertices
by cosmic concepts such as mystery, order, and freedom, to display their relations
(ReS [21, p. PU46]). Like a commutative diagram, this drawingwasmade to organize
conceptual information—not to visualize shapes. As De Toffoli and Goyvaerts put it

7He plays with the fact that the French soleil means both sun and sunflower.
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these diagrams “do not rely on any kind of topological notions: what counts is their
combinatorial structure” [11, p. 6].

3.2 The Sea Rises Around Cohomology

Grothendieck approached Weil cohomology by his typical method of the rising sea.
He never says this is the one way to do math. To the contrary, he often says he could
not have done what he did without the benefit of Serre’s style which Grothendieck
calls the method of hammer and chisel.8 But Grothendieck passionately described
this as his way seeMcLarty [37].Without specifically seeking aWeil cohomology, he
reflected on the problem. The first result was that cohomology itself became simple
to him:

The viewpoint of sheaves was the sure and silent guide, the effectual (and by no means
secret) key. (ReS [21, p. P38])

But each sheaf contains unmanageably much information, most of it unrevealing.
Rather than specific sheaves, Grothendieck looked at

the set of all sheaves on a given topological space or, if you like, the prodigious arsenal of
all “meter sticks” that measure it … as equipped with its most evident structure, the way
it appears so to speak “right in front of your nose”; that is what we call the structure of a
“category.” (ReS [21, p.P38])9

Members of Cartan’s seminar [9] already defined the cohomology of a space M
as a connected series of functors from the categoryAbShM of all sheaves of Abelian
groups on M to the category AbGrp of ordinary Abelian groups.

AbShM AbGrp i ∈ N.
Hi

Each value Hi (F) is called the i -th cohomology group of M with coefficients in F .
The seminar relied on “drawings (called ‘diagrams’) full of arrows covering the

board” (ReS [21, p. 19]).10 The vertices could represent sheaves, or Abelian groups,

8Marble sculptures are made by hammer and chisel.
9MacLane [33, Ch. VII] is a masterful account of Abelian categories. For homological algebra
through derived functors and spectral sequences see Lang [27, Ch. XX].
10In e-mails of June and July 2004 Serre argues that Grothendieck mis-remembered the events.
Certainly Grothendieck was wrong to say the 1948–49 seminar discussed spectral sequences (ReS
[21, p. 19]) as Serre did not know of them then. Serre suggests Grothendieck did not often attend the
seminar, whose contents would not have interested him at the time: “Grothendieck spent the year
48–49 in Paris (straight from his “licence" at Montpellier) and he stated in print several times that
he attended the Cartan seminar of that year. I don’t doubt this, but I have no memory of him then….
He probably got the written texts; I am not even sure he looked at them before 53 or even 54. They
only influenced him in retrospect—just as a book one reads and finds interesting” (26 June 2004).
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and the arrows represent morphisms. The diagram would show that if some mor-
phismshave someproperties thenothers existwith other properties. Themost famous,
because it is constantly used, is the Snake Lemma:

Ker g Ker h

A B C 0

0 A′ B ′A C ′

Cok f Cok g

δ

f g h

Proofs are given in numerous books, websites, and YouTube videos.
Grothendieck saw clearly what everyone in the seminar saw somehow: the dia-

grams for sheaves were the same as for plain Abelian groups. Everyone saw cate-
gories of sheaves are a lot like AbGrp. He asked precisely how that likeness makes
cohomology work. While [8, 30, 31] asked a similar question, Grothendieck took it
to unprecedented heights [37, pp. 305–11].

Grothendieck [18] gave a short list of axioms such that any category A satisfying
those axioms will have a sequence of functors supporting all the general theorems
of cohomology.

A AbGrp i ∈ N.
Hi

The standard tools of cohomology, notably including spectral sequences, all apply.
This is derived functor cohomology and is a staple of current algebraic geometry,
group cohomology, and much of algebraic topology.

Such a category is called an Abelian category and specifically an AB5 category.
For every topological space M the sheaf category AbShM is AB5 and gives the
now-standard cohomology of M. The module category over any ring is AB5 and for
suitable rings it gives the now-standard cohomology of groups.

An expert in cohomology could feel, as many did in 1957, that AG’s axioms are a
mere abstraction from specific known theories, albeit a surprisingly apt and concise
one. It made classical results radically easier to prove. But it also led to new results
already in the Tôhoku paper. And the astonishing thing, even to Grothendieck, is
how perfectly it later suited the then undreamt of theory of topos cohomology:

Certainly, for more than one aspect of this new geometry (if not for all) no one, on the very
eve of the day it appeared, could have dreamed of it—the worker himself no more than
others. (ReS [21, p. P28])
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3.2.1 Classical Topology and the Universal Property of Cohomology

Grothendieck in effect defines cohomology as the universal measure of the difference
between local and global structures.11

First, it is intuitively clear that when a space M = M ′ ∪ M ′′ is a union of over-
lapping open parts M ′,M ′′ then the passage between local and global structures on
M can be divided into

(1) the passages on M ′ and M ′′ separately, and
(2) connections between those and the passage on their overlap M ′ ∩ M ′′.

The division has been well understood since [50].
Fortunately the details are not important here. We only need say it is expressed

by theMayer-Vietoris sequence putting the cohomology groups of M and M ′ ∩ M ′′
into an infinite exact sequence with the sum of groups Hi (M ′) ⊕ Hi (M ′′):

H0(M) → H0(M ′) ⊕ H0(M ′′) → H0(M ′ ∩ M ′′) → H1(M) →
H1(M ′) ⊕ H1(M ′′) → H1(M ′ ∩ M ′′) → H2(M) → H2(M ′) ⊕ H2(M ′′) → · · ·

Every algebraic topology textbook shows this is a naturally intuitive approach to the
cohomology of manifolds.

A δ-functor Fi :A→AbGrp on any AB5 category A is any infinite sequence of
functors that gives Mayer-Vietoris-like exact sequences with sheavesH,K,K/H in
place of spaces whenever H is a subsheaf of K and K/H is their quotient:

F0(H) → F0(K) → F0(K/H) →F1(H) →
F1(K) → F1(K/H) → F2(H) → F2(K) → · · ·

Now let us say the formal candidates for the cohomology of a space M are the δ-
functors Fi on AbShM with F0 the global section functor. So F0 assigns to any
sheaf H the group H(M). That is, a formal candidate must apply to sheaves on M
and must yield something formally like Mayer-Vietoris sequences. This very weak
requirement does not by itself force Fi to be much like the cohomology of M.

The miracle is that derived functor cohomology on M is the unique (up to iso-
morphism) initial object in the category of formal candidates. It is the one formal
candidate that maps uniquely into every formal candidate. In this precise sense, coho-
mology is the sequence of functors on AbShM that best “avoids positing extraneous
elements” and “avoids imposing extraneous equations” among all sequences that
could possibly express the passage between local and global.

11Grothendieck [18, p. 141], Tennison [49, p. 128], Hartshorne [25, p. 206], et alia.
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4 The Spectacular Flight of the New Geometry

Grothendieck told the Edinburgh International Congress of Mathematicians:

Serre’s idea that a ‘reasonable’ algebraic principal fiber space with structure map G, defined
on a variety V , if it is not locally trivial, should become locally trivial on some covering of
V unramified over a given point of V….12 has been the starting-point of a definition of the
Weil cohomology…which gives clear suggestions howWeil’s conjectures may be attacked
by the machinery of Homological Algebra. [19, p. 104]

For him the machinery of Homological Algebra was Tôhoku (1957).
With clear ties to classical topology and Galois theory, [46, p. 124] defined a

new kind of 1-dimensional cohomology groups for algebraic varieties that gave
the 0- and 1-dimensional part of Mayer-Vietoris-like sequences suited to the Weil
conjectures. Serre saw great obstacles to higher dimensional cohomology of this
kind. But Grothendieck was certain, as Deligne later put it, “given any category
of sheaves a notion of cohomology groups results” [14, p. 16]. And a category of
sheaves just meant any AB5 category. The problem for Grothendieck was to build
an AB5 category out of Serre’s isotrivial covers for any one scheme.

4.1 The Proper Object of Topology

Prima facie the method did not need to look like classical topology at all. It only had
to produce an AB5 category. Yet the actual result was so close to classical that

as the term “topos” itself is precisely intended to suggest, it seems reasonable to the authors of
this seminar to take as the object of topology the study of toposes (and not only of topological
spaces). [24, p. 3]

By the Spring of 1961 Grothendieck saw how to do topology, and specifically
sheaf theory, using Serre’s isotrivial covers of a scheme f : E→ S instead of open
subsets U ⊆ S [20, p. 298 § 4.8].

I come to the second couple I wanted to speak of, the notions of scheme and the closely
related one of topos…[formalizing] the topological intuition of localization…. The flagrant
needs of algebraic geometry led me to introduce one after the other schemes and toposes.
This couple of notions had in them the power to produce a vast rebirth of algebraic geometry
and also arithmetic, and topology, by a synthesis of these too-long separated “worlds” in one
common geometric intuition. (ReS [21, p. 180])

The objects of any one topos act like sheaves on one space.13 Yet Grothendieck
also knew one topos is like one universe of sets in which much of mathematics can

12Grothendieck cites [45] which loosely presages unramified covers. The truly germane [46] was
not yet in print.
13SometimesGrothendieck distinguishes a petit topos of sheaves on a generalized space, from a gros
topos which is a category of generalized spaces. Lawvere [28, 29] has developed this idea further.
This distinction has nothing to do with set theoretic size. Gros and petit Grothendieck toposes are
both proper classes in naive set theory.
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be interpreted (see discussion in [36], pp. 358ff). The Abelian groups in this universe
correspond to Abelian sheaves on a topological space or on a scheme. Grothendieck
applies this viewpoint in several ways to cohomology (besides that William Lawvere
and others have pursued much wider applications).

For example Grothendieck and Verdier [24, p. 207ff] show how various facts
about base change of sheaves along a scheme morphism f : S→ S′ appear as simply
linear algebra in the étale toposes Shét

S and Shét
S′ on those schemes.

For two reasons internalization does not radically change the proofs:

(1) Working correctly inside a topos requires a bit of care.
(2) Internalization formalizes intuitions the experts already have about how sheaves

of algebras, for example, are like plain algebras.

As to 1 though, internalization sometimes offers real simplifications. And as to
2 Grothendieck found real value in knowing these expert intuitions are not just
metaphors. They are theorems of topos theory. And so, although toposes can be
eliminated from proofs, the anonymous author(s) of the Introduction to SGA 6
“would advise the reader nonetheless to learn the topos language which furnishes an
extremely convenient unifying principle” [5, p.VII].

4.2 The Long Awaited Marriage of Geometry and Arithmetic

However, the rebirth needed specifics. In Grothendieck’s words the couple, schemes
and topos, or arithmetic and topology, had to marry (Res [21, p. 24], and much
passim). This is where Michael Artin came in.

In 1961 Michael Artin proved the first concrete theorem on higher dimensional
étale cohomology [2, p. 359]. It was never published and no one I can contact is
confident of recalling it. David Mumford suggests it was that the plane with origin
deleted has non-trivial 3-dimensional cohomology H3. This was a classical result for
any classical cohomology theory using real number coefficients, when the “plane” is
taken to be C2 for the complex numbers C. Topologically, deleting the origin in C

2

just gives 4-dimensional real space R4 with its origin deleted. That space contracts
smoothly onto the 3-sphere so they have the same cohomology.

S3 = {〈x, y, z, w〉 | x2 + y2 + z2 + w2 = 1 } ⊂ R
4.

Like every orientable3-dimensional manifold, S3 has non-trivial H3. Specifically„
every orientable3-dimensional manifold M has H3

R
(M) = R.

Likely Artin proved his result also for C2 with deleted origin; but for finite étale
coefficient groups. And he probably did not calculate the 3-dimensional cohomology
for any coefficients. More likely he used a spectral sequence for a Künneth formula
to show the H3 are not always zero.

Whatever it was exactly, Artin’s proof showed étale cohomology will not only
work in principle, somehow. He made it prove a classical theorem of cohomology—
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considerably changed no doubt, but little enough changed to be discoverable, and
to work as desired. Grothendieck invited him to collaborate in the seminar creating
Théorie des topos et cohomologie étale [3].

Then Deligne joined the seminar and extended the general theory of topos coho-
mology and the specific étale analogues of classical theorems. Volume 3 of SGA 4
[3] is devoted to Artin’s and Deligne’s progress on this, aiming for a Lefschetz fixed
point theorem to count solutions to Weil’s equations.

This was incredible. Many good experts did not believe it could work. The Lef-
schetz theorem, as sketched in Sect. 2.2, depends entirely on continuity of the man-
ifold M. The arithmetic of whole numbers, let alone finite fields, should not be
expected to produce continuous topologies. Indeed the relevant schemes have count-
able point sets. They cannot be continuous in anything like the sense that the classical
Lefschetz theorem relies on. And yet it worked.

SGA 5 [26] proves a Lefschetz Theorem. Deligne [13] gives a summary of the
proof plus improvements. The rest of the proof of the Weil conjectures did not go
exactly as Grothendieck intended [12]. But it did hang on the Lefschetz Theorem in
étale cohomology.

Grothendieck writes:

The two consecutive seminars together, SGA 4 and SGA 5 (which are like one single “sem-
inar” for me) develop simultaneously, from scratch, the powerful tool of synthesis and dis-
covery which is the language of topos, and the perfectly adapted, perfectly efficacious tool
which is étale cohomology—which is currently better understood in its essential formal
properties than is the cohomology of ordinary topological spaces…. These two seminars are
inseparably linked for me. In their unity they represent at once the vision, and the tool—
toposes and a complete formalism of étale cohomology…. algebraic geometry in its most
fascinating aspect for me—the “arithmetic” aspect, apprehended by intuition, concepts, and
techniques all of “geometric” nature. (Res [21, p. 372f])

5 Logical Foundations and Mathematical Progress

Grothendieck’s idea of a scheme is simpler than Weil’s idea of an abstract variety
in exactly the same way as the idea of a commutative ring is simpler than the idea
of an algebraically closed field of infinite transcendence degree over its prime field.
Those are the algebraic structures they start with. Of course detailed assumptions
are sometimes needed. To prove a theorem that only holds over algebraically closed
fieldsGrothendieck can look at that case. But formuch basic algebraic geometry such
assumptions are useless complications. For advanced work they can be damaging
restrictions.

Grothendieck’s typical method shows in his proof of a Riemann-Roch theorem
for continuous families of varieties over any field. This goes beyond Hirzebruch’s
version for single varieties over the complex numbers:

Grothendieck has generalized the theorem to the point where not only is it more generally
applicable than Hirzebruch’s version but it depends on a simpler and more natural proof. [7]
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Grothendieck uses base change to turn any given continuous family to another sim-
pler one. But, even starting with a single complex variety, that simpler family will not
be a single variety. The simpler proof requires the more general idea of continuous
families of varieties.

Grothendieck found simplicity came with unity, while unity and generality “are
two aspects of one quest. Unity represents the profound aspect, and generality the
superficial” (Res [21, p. PU 25]).

So when Grothendieck states theorems for all sheaves on a space, or all δ-functors
on a category, generality is the superficial aspect. Unity and simplicity are the point.
Avoiding irrelevant restrictions makes things simpler. The totality of all sheaves on
one space forms a unifying context, a topos. The totality of all δ-functors on some
AB5 category allows a unified conceptual definition of cohomology, by a universal
property which in fact is constantly used in proofs.

As a byproduct, Grothendieck often invokes “sets” too large to exist on ordinary
set theoretic foundations. Many mathematicians after him do the same even when
they do not care to notice the fact. This is why Pierre Cartier says “Nowadays, one of
the most interesting points in mathematics is that, although all categorical reasonings
are formally contradictory, we use them and we never make a mistake” [16, p. 33].
He knows several fixes for the problem but also knows the most common approach
today is to ignore it.

Grothendieck cared to get it right. He extended ordinary set theory by using
universes [23]. McLarty [38] describes what difference this makes, how often it is
used in the literature, and places where the issue arises and is ignored.

It is cryingly obvious that specific known proofs in number theory like those for
theWeil conjectures, or Fermat’s Last Theorem, do not truly need the logical strength
of Grothendieck universes. But it is also obvious that, for example, antiques costing
thousands of dollars at a top gallery can be bought for a tenth of that—if you have
weeks to spend at estate sales. Using higher logical strength (like spending more
money) saves time and effort.

In fact, though, the very things Grothendieck bases on universes, such as toposes,
the derived categories of toposes and so on, can be had in the same way at far lower
strength. The key point here was necessarily unavailable to Grothendieck at the time.
It appears in hindsight knowing what theorems actually occur in the SGA and related
works.

None of their proofs but one ever uses the axiom scheme of replacement. That
one lies at the base of Tôhoku (1957, p. 135) and is constantly used in the SGA.
It is the proof that AB5 categories have enough injectives. But it can be rewritten
without replacement. With that change, none of Grothendieck’s cohomology uses
replacement or even unbounded separation.

So the entire SGA could be simply re-edited changing nothing but the few pages
defining universes, so the same proofs still work verbatim, with all the conceptual
unity Grothendieck created, at the logical strength of higher order arithmetic [39].
Naively put, there are natural numbers, sets of natural numbers, sets of those sets,
and so on through any finite iteration of sets of sets—but only finite iterations. This
is also the strength of Simple Type Theory, or Bounded Zermelo Set Theory, or
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the Elementary Theory of the Category of Sets. It is a very natural strength for
ordinary abstract mathematics. It is overtly the weakest foundation that can preserve
the unifying theory of toposes since it has the logical strength of saying there is one
elementary topos with a natural number object.

On the other hand, this is still far stronger than most concrete arithmetic and
analysis truly need. Aside from things like Gödel sentences, most existing concrete
arithmetic and analysis is currently known to require no more logical strength than
Peano Arithmetic (PA) see Friedman and Simpson [17, 48]. Strictly speaking PA has
only numbers and not even sets of them. But it can interpret a very limited amount of
set theory. Working at the strength of PA means using cohomology only in ways that
can be eliminated in principle. That requires putting numerical bounds on specific
steps of individual proofs. Number theorists often do explore such bounds quite apart
from any concernwith logic, because bounds can be interesting and difficult to prove.
Macintyre [34, Appendix] gives extensive, wide ranging evidence that all the proofs
in current cohomological number theory can be so bounded. For what my opinion is
worth I expect that is true. But Macintyre cites numerous steps where it is not now
actually known. It is just very plausible. He predicts it would take a great deal of
effort, including substantial new theorems of number theory, to prove the relevant
bounds exist.

Grothendieck did not care about that. Using large sets is easier. But he linked
working, conceptual, and logical foundations all to progress. He was discouraged as
a student in Montpellier when “Professor Soula assured me that the last problems
to have been posed in mathematics had been solved 20 or 30years ago by one
Lebesgue” (Res [21, p. 33]). But he heard the Parisians would know if anything was
new.14 Preparing to go there he learned some set theoretic foundations and wrote
about it to a friend. He concluded:

As you have seen it has been a slow process for mathematicians to work their way to the
fundamentals of their concepts; almost against their will, they have for a time turned away
from the unresolved formalism of classical algebra and analysis, in order to break down their
concepts, theories, and results into their truly elementary parts. One may say that they have
succeeded and that some among them have at last developed the mind set which allows them
to seek the fundamentals of every definition, and then to investigate the essential formal
elements in every theory and theorem, which may permit them to restructure what has been
observed of an already known theory, or to extend it to more general conclusions. (letter of
July 29, 1948 quoted in [43], p. 163).
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Understanding the 6-Dimensional Sphere

Michael Atiyah

Dedicated to the memory of Shing-Shen Chern

Abstract In [1] I gave a proof of the long-standing conjecture that the 6-dimensional
sphere has no complex structure. In this paper I will present the proof in a more trans-
parent manner. I use the example of the 6-sphere to shed new light on many problems
of physics. In the future I expect these ideas will provide a different perspective, with
substantial benefits in all areas.
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1 Introduction

In [1] I gave a short proof of the conjecture that the 6- dimensional sphere has no
complex structure. The proof, though short, was intricate and it failed to convince
the many experts in the field. Indeed there were many sound reasons to be sceptical,
notably

(1.1) the integrability of the hypothetical complex structure was never used,
(1.2) another elderly distinguished mathematician, S. S.Chern, had claimed to have

found a proof which was subsequently shown by Bryant [11] to prove some-
thingweaker and it was not clear howmuch symmetry the new purported proof
assumed, which suggested a gap like that in Chern’s proof.
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Having listened carefully to all these objections I have found a new and even
shorter proof which I will explain in this paper. In particular I will explicitly use a
hypothetical complex structure without any symmetry assumptions, thus avoiding
Chern’s error. But in homage to a great man who, despite old age, was not afraid to
tackle difficult problems in Geometry, I decided to dedicate this paper to his memory.

I will use one new idea which greatly simplifies the presentation, making it more
transparent. This is to consider not the round sphere S6, but the conformal sphere S6.
I will begin in Sect. 2 by recalling the geometry behind relativistic physics.

2 Relativistic Physics

The conformal 6-sphere S6 is the base of the light-cone in 8-dimensional Minkowski
space and is the boundary of hyperbolic 7-space. As such it has no natural Rieman-
nian metric, but it has a natural conformal structure which is the limit of space-like
Riemannian manifolds S(c) with natural hyperbolic metrics. Here c is the velocity
of light and the limit is that in which c tends to infinity. For small c, S(c) represents
slow motion. There is also the light-like region where c < 0. Natural always means
compatible with the appropriate symmetry group, which here is the Lorentz group
of automorphisms of Minkowski space R(7, 1). This is a non-compact Lie group as
opposed to the compact symmetry group SO(8) of the round sphere. The failure to
distinguish clearly between the roles of these two groups is ultimately the source of
much confusionwhich Iwill now strive to dispel. There is another difference between
Minkowski and Euclidean space: the automorphism group of Minkowski space has
4 components, coming from time reversal T and spatial orientation reversal(parity)
P . There is also charge reversal C which, in a Kaluza-Klein frame-work, is a circle
reversal. The famous CPT theorem asserts formally that CPT = 1. This holds in
both 4 and 8 dimensions and is elementary. Outwith the Kaluza-Klein framework it
just defines C as the inverse of PT . Consider Minkowski 8-space with coordinates
x, y, t where x is a 4-vector, y a 3-vector and t a scalar. The quadratic equation, for
positive real t ,

‖x‖2 + ‖y‖2 = c2t2 (2.1)

defines S(c), the hyperbolic approximation to the conformalS6, if c is real andpositive
(with t being time and c the velocity of light). If c′ < c then S(c′) is inside S(c), and
all S(c) are diffeomorphic. It follows that any differential-topological invariant is the
same for all positive c and hence for the limit manifold S6. Our aim is to understand,
in a fundamental way, why the base of the standard Minkowski light cone S2 has a
complex structure while its 6-dimensional analogue does not.
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3 Finite Symmetries

The proof in [1] was difficult to comprehend partly because it did not use the
homogeneity of S6, and would have applied to other 6-manifolds satisfying weaker
conditions. Now I will use the fact that S6 is a homogeneous space of the conformal
group Spin†(7, 1), which preserves future & past. More explicitly, any two distinct
points on S6 can be transformed by the connected group Spin†(7, 1) into the standard
anti-podal pair on the 3-sphere given by (2.1) with y = 0. Thus S6 is naturally the
homogeneous space

Spin†(7, 1)/(Z/2 × Spin(6))

with a compact isotropy group having two components. The Z/2 factor interchanges
(x, t) and (−x,−t), switching the two poles. This group acts on S6 intransitively
with the 1-parameter family of 5-dimensional orbits indexed by c described in Sect. 1.
It is important, as in all physics since Dirac, to use the Spinor groups instead of the
orthogonal groups. Let me now review briefly the relation between representation
theory and K -theory. We can start with finite groups where it is classical algebra,
but which I will formulate geometrically, so that a G-vector bundle V on G/H is
the same as a representation of H . More precisely the action of H on V at the
base point (restriction) is naturally isomorphic to the Poincaré dual, push-forward
(induction). The same is true for complex reductive Lie groups where the push-
forward is holomorphic induction. This is the Bott-Borel-Weil Theorem BBW [10]
and can be understood via the Hirzebruch-Riemann-Roch Theorem (HRR). For the
round sphere S6, the compact group Spin(7) acts transitively so that index theory
takes values in the representation ring R(Spin(7)) but, for the conformal sphere
S6, the compact group Z/2 × Spin(6), is not transitive so the index takes values in
the smaller representation ring R(Z/2 × Spin(6)). In fact, for our purposes, we can
restrict even further to the maximal 2-group of Spin†(7, 1), which is the quaternion
group � of order 8. HRR is a special case of the Atiyah-Singer index theorem AS
[3] and it has an equivariant form for compact groups [4]. The main features of AS,
as opposed to the classical HRR are

(i) It is metric-independent
(ii) only an almost complex structure is needed.

For these reasons index theory leads to complex cobordism invariants, for almost
complex manifolds as shown by Milnor and Quillen. Using equivariant K theory,
index theory will do the same for equivariant cobordism. I will only use equivariance
for the maximal 2-group concerned, which for S6 is the quaternion group � of order
8. It is crucial to note that � acts on the conformal sphere S6 without invoking any
additional symmetry. This is clear from the background physics where C, P, T are
universally applicable. Geometrically, at each point, the 3 complex variables can be
conjugated. To understand this action in more detail let me recall that � is a central
extension by Z/2 of the abelian quotient Z/2 × Z/2, giving the exact sequence
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0 → Z/2 → � → Z/2 × Z/2 → 0 (3.1)

Geometrically the abelian quotient is just the conjugation action on C
3, preserving

orientation. The central Z/2 is not local but global, switching the base-point and its
opposite, compatibly with the local complex structures. Note that this globalZ/2 ac-
tion is complex conjugation in the sense of [2]. An alternative andmore sophisticated
physical way of understanding � is to use both orientations of Minkowski space and
work with Z/2 graded objects (Fermions & Bosons). This incorporates Spin (or Pin)
and the central extension. Representations can be either Fermionic (odd) or Bosonic
(even). The index, denoted by Trace(−1)F , is a topological invariant. ForMinkowski
space R(7, 1) this index is odd, while a complex structure would have even index.
This way of explaining the Theoremmay bemore attractive to physicists, but this pa-
per like [1] is intended for mathematicians, usually wary about physical arguments.
With these preliminaries out of the way I will, in Sect. 4, explain how to prove the
theorem.

4 Proof of the Theorem

Theorem The 6-dimensional sphere has no complex structure.

Proof I apply the �-equivariant Atiyah-Singer Index theorem to the hypothetical
complex structure on S6 with its � action. The index is a representation of �. Since
the central Z/2 acts trivially on the complex structure the index is an abelian rep-
resentation. This has used the hypothetical complex structure. On the other hand,
forgetting about this complex structure and just using its manifold structure, we can
choose any� invariant metric to calculate the� index. Naturally we choose the round
metric and see at once that � acts freely, and its index is the regular representation.
This is faithful and so non-abelian.
The contradiction is now evident and the Theorem is proved.

Notes:

4.1 Because � is intrinsic to S6, any complex structure on S6 has to have an action
of �.

4.2 Because of property (ii) in Sect. 3, the complex integrability can be dispensed
with as in [1].

4.3 In [1] I used K R(p, q) theory. In this paper, standard K -theory is adequate,
because the representations of � embody the same refinements.

4.4 The reason why S2 differs from S6 is that the analogue of � is now of order 2
and so is abelian.
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5 Future Generalization

This volume was designed to look at the physics/mathematics interface pointing
towards the future. The problem about S6 is a good example of a frontier problem,
since it is the base of the light-cone in Minkowski 8-space. My approach to this
problem is a good illustration of new techniques, which have old roots but whose
full potential has not been thoroughly exploited. In fact the applications of these
techniques are extensive and central to the physics/mathematics interface. Here is a
brief list of some topics to be explored in the future.

5.1 Index theory and atoms [5]
5.2 Equivariant index theory for real forms of reductive Lie groups and its relation

to the work of Harish-Chandra [6, 13]
5.3 Index theory, monopoles and the Yang-Baxter equations on curved backgrounds

[9]
5.4 de Broglie-Bohm pilot waves and solitons
5.5 Duality between the discrete (Bohr) and the continuous (Einstein)
5.6 Quaternionic index theory and the work of Kazhdan-Lusztig [8]
5.7 Index theory, the magic square and the Hopf-Kervaire invariants [7, 12].
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A Dozen Problems, Questions
and Conjectures About Positive
Scalar Curvature

Misha Gromov

Abstract Unlike manifolds with positive sectional and with positive Ricci
curvatures which aggregate to modest (roughly) convex islands in the vastness of
all Riemannian spaces, the domain {SC > 0} of manifolds with positive scalar cur-
vatures protrudes in all direction as a gigantic octopus or an enormousmulti-branched
tree. Yet, there are certain rules to the shape of {SC > 0} which limit the spread of
this domain but most of these rules remain a guesswork. In the present paper we
collect a few “guesses” extracted from a longer article, which is still in preparation:
100 Questions, Problems and Conjectures around Scalar Curvature. Some of these
“guesses” are presented as questions and some as conjectures. Our formulation
of these conjectures is not supposed to be either most general or most plausible, but
rather maximally thought provoking.

1 Definition of Scalar Curvature

The scalar curvature of a C2-smooth Riemannian manifold X = (X, g), denoted
Sc = Sc(X) = Sc(X, g) = Sc(g) is a continous function on X , written as Sc(X)(x)

and Sc(g)(x), x ∈ X , which is uniquely characterised by the following four
properties.

•1 Additivity under Cartesian-Riemannian Products.

Sc(X1 × X2, g1 ⊕ g2) = Sc(X1, g1) + Sc(X2, g2),

where this equality is understood point-wise,

Sc(X1 × X2)(x1, x2) = Sc(X1)(x1) + Sc(X2)(x2).

•2 Scale covariance.
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Sc(X, λ2 · g) = λ2 · Sc(X). for all real λ > 0.

Thus, for instance, since (Rn, g0) is isometric to (Rn, λ2 · g0) for the Euclidean
metric g0,

Sc(Rn) = 0 for all n = 1, 2, 3, . . . .

•3 Volume Comparison. If the scalar curvatures of n-dimensional manifolds X
and X ′ at some points x ∈ X and x ′ ∈ X ′ are related by the strict inequality

Sc(X)(x) < Sc(X ′)(x ′),

then the Riemannian volumes of small balls around these points satisfy

vol(Bx (X, ε)) > vol(Bx ′(X ′, ε))

for all sufficiently small ε > 0.
This volume inequality, in agreement with •1, is additive under Riemannian prod-

ucts if
vol(Bxi (X, ε)) > vol(Bx ′

i (Xi
′, ε)), for ε ≤ ε0,

and for all points xi ∈ Xi and x ′
l ∈ X ′

i , i = 1, 2, then

voln(B(x1,x2)(X1 × X2, ε0)) > voln(B(x ′
1,x2 ′)(X ′

1 × X ′
2, ε0)

for all (x1, x2) ∈ Xi × X2 and (x ′
1, x ′

2) ∈ X ′
1 × X ′

2.
This follows from the Pythagorean formula

distX1×X2 =
√

dist2X1
+ dist2X2

.

and the Fubini theorem applied to the “fibrations” of balls over balls:

B(x1,x2)(X1 × X2, ε0)) → Bx1(X1, ε0) and B(x ′
1,x ′

2)(X ′
1 × X ′

2, ε0)) → Bx1(X ′
1, ε0),

where the fibers are balls of radii ε ∈ [0, ε0] in X2 and X ′
2.

•4 Normalisation/Convention for 2-spheres. The unit sphere S2 = S2(1) has con-
stant scalar curvature 2 (twice the sectional curvature).

It is an elementary exercise to prove the following.

�1 The function Sc(X, g)(x) which satisfies •1-•4 exists and is unique;

�2 The unit spheres and the hyperbolic spaces with sect.curv = −1 satisfy

Sc(Sn(1)) = n(n − 1) and Sc(H n(−1)) = −n(n − 1).

Thus,
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Sc(Sn(1) × H n(−1)) = 0 = Sc(Rn),

which implies that the volumes of the small balls in Sn(1) × H n(−1) are “very close”
to the volumes of the Euclidean 2n-balls.

�3 The scalar curvature of a Riemannian manifold X is equal to the sum of the
values of the sectional curvatures at the bivectors of an orthonormal frame1 in X ,

Sc(X)(x) =
∑
i, j

ci j , i, j = 1, . . . , n.

For example, all compact Riemannian symmetric spaces X , except for the n-torus
T

n , have Sc(X) > 0, while T
n , being covered by R

n , has Sc(Tn) = 0.

It may be tempting to take the above •1 − •4 for a definition of scalar curvature
for singular metric spaces X . In fact, it may work for X with moderate singularities,
e.g. for Alexandrov’s spaces with sectional curvatures bounded from below (see [1]),
where the properties of the so defined scalar curvature must be comparable to what
is observed in the smooth case (see Sect. 7).

Yet, volumes of balls do not touch the heart of the scalar curvature; we suggest
an alternative in Sect. 7.

2 Soft and Hard Facets of Scalar Curvature

We are not so much concerned with the scalar curvature Sc(X) per se, but rather
with the effect of lower scalar curvature bounds on the geometry and the topology
of X , where, for instance, the inequality “Sc(X) > 0” can be defined by saying that

all sufficiently small balls Bx (ε) ⊂ X , ε ≤ ε0(x) > 0, have volumes smaller than
the volumes of the equividimensional Euclidean ε-balls.

Then “Sc(X) ≥ 0” is defined as

Sc(X) > −ε” for all ε > 0.

Similarly

“Sc(X) ≥ σ”, σ > 0, is equivalent the volumes of Bx (ε) in X being smaller
than the volumes of the ε-balls in the Euclidean spheres Sn(R) of radii R >√

(n(n − 1)/σ ),

and Sc(X) ≥ −σ is expressed by

the bound on the volumes of Bx (ε) by those of the ε-balls in the hyperbolic spaces
with constant the sectional curvatures < −σ/n(n − 1).

1Remarkably, this sum is independent of the frame by the Pythagorean theorem.
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Alternatively, “Sc(X) ≥ −σ” can be defined with no reference to hyperbolic
spaces by the reduction to the case σ = 0 and appealing to the relation

Sc(X × Sm(R)) ≥ 0 for R = √
(m(m − 1)/σ ,

where one may use any m ≥ 2 one likes.

Although the key role of the scalar curvature in general relativity was established
by Hilbert’s variational derivation of the Einstein equation more than a century ago
(see [2]) the significance of Sc(X) in the global geometry and in topology remained
obscure until 1963, when André Lichnerowicz (see [3]) showed that the inequality
Sc(X) > 0 imposes non-trivial constraints on the topology of X .

For instance, Lichnerowicz’ theorem implies that

if m is even, then smooth complex projective hypersurfaces X ⊂ CPm+1 (these
have real dimension dim(X) = 2m) of degrees ≥ m + 2, e.g. X ⊂ CP3 given by
the equation

x4
1 + x4

2 + x4
3 + x4

4 = 0,

admit no metrics with Sc > 0.

This follows from the Atiyah-Singer formula for the (Atiyah-Singer)-Dirac
operator D confronted with (what is now called) the Schroedinger-Lichnerowicz-
(Weitzenboeck-Bochner) identity.

In fact, the index formula implies that the index of D on these manifolds does
not vanish,2 and, consequently, there are non-zero harmonic spinors on these X
(i.e. solutions s of D(s) = 0), while the Schroedinger-Lichnerowicz-(Weitzenboeck-
Bochner) identity

D2 = ∇∇∗ + 1

4
Sc,

shows that closed manifolds with Sc > 0 admit no harmonic spinors.

Eleven years later, Nigel Hitchin (see [4]) used a more sophisticated 1971 ver-
sion of the Atiyah-Singer index theorem which yields harmonic spinors on some
exotic spheres �n (which are homeomorphic but not diffeomorphic to the ordinary
spheres Sn) of dimensions n = 8k + 1 and n = 8k + 2 and which, together with the
Schroedinger-Lichnerowicz’ identity, implies that

there is no metrics with Sc > 0 on these �n .

Then Stefan Stolz, elaborating on the earlier work by several authors, showed that
there are

no further obstructions to the existence of metrics with Sc > 0 on simply
connected manifolds of dimension ≥ 5 besides those delivered by the index
theorem [5].

For instance

2This formula says in the present case that I nd(D) = Â(X) where Â(X) is a particular Pontryagin
number of X .
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all simply connected manifolds of dimensions n = 3, 5, 6, 7 mod 8 admit met-
rics with positive scalar curvatures.

The proof of this theorem, which relies on surgery of manifolds with Sc > 0 and
on the cobordism theory, suggests that manifolds with positive scalar curvature are
almost as soft as smooth manifolds with no geometric constraints imposed on them.
But the grand picture of scalar curvature in all its beauty unravels when one looks
beyond this “almost”.

(The opposite inequality Sc(X) < 0 is truly and fully soft and, unlike Sc > 0,
has no influence on the topology and global geometry of X what-so-ever (see [6])).

A manifestly rigid property of Sc > 0 can be already seen in the following corol-
lary to Schoen-Yau solution of the Riemannian positive mass conjecture in relativity
(see [7]).

Solution of the Geroch Conjecture.3 The Euclidean metric g0 on R
3 (which

has Sc(g0) = 0) admits no non-trivial compactly supported perturbations g with
Sc(g) ≥ 0.

Namely, if a smooth Riemannian metric g on the Euclidean spaceR
3 has Sc(g) ≥

0 and if g is equal to g0 outside a compact subset in R
3, then Sc(g) = 0; moreover,

g is Riemannian flat, that is (R3, g) is isometric to (R3, g0).

This result has been refined and generalised in a variety of directions (see below
and also [13, 21] at the end of the next section and references therein) but the
rigidity of Sc > 0 we are after, albeit related to the above, is of different nature. In
fact what we look for is

a structurally organised set of (desirably sharp) geometric inequalities satisfied
by manifolds with Sc > 0, more generally, with Sc ≥ σ .

Also, we search for a general category (or categories) of spaces, or other kind of
objects, which would satisfy (certain classes of) such inequalities.

Additional Remarks and References
Geroch conjecture has been validated in all dimensions:

The Euclidean metrics on R
n for all n admit no non-trivial compactly supported

perturbations with Sc ≥ 0.

This (trivially) follows, for instance, from non-existence of metrics with Sc > 0 on
the n-tori where the latter can be most easily proved by applying the index theorem
to suitably “twisted” Dirac operators.

Witten suggested a different way of using the Dirac operator in the context of
the positive mass problem, where the index theorem is replaced by a direct proof

3Attribution of this simplified positive mass conjecture to Robert Geroch is made in the above cited
paper by Schoen and Yau.

In fact, the full Riemannian positive mass conjecture which describes possible asymptotic
behaviours of metrics with Sc > 0 on R

3 (and on R
n for this matter) which are close (rather

than equal) to the Euclidean metric at infinity follows from this Geroch conjecture according to J.
Lohkamp, Scalar curvature and hammocks, Math. Ann. 313 (1999), 385–407.
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of harmonic stability of parallel spinors on R
n under certain perturbations of the

Euclidean metric.
By a similar method, Min-Oo (see [8]) proved that

the hyperbolic metric g0 on the real hyperbolic space H n
R

admits non non-trivial
compactly supported perturbations g with Sc(g) ≥ −n(n − 1) = Sc(g0).

Apparently, it is unknown

if other symmetric spaces of non-compact types admit com-
pactly supported perturbations of their Riemannian metrics
which would increase scalar curvature.

3 Bounds on the Uryson Width, Slicing Area and Filling
Radius

A. Conjecture. Let X be an n-dimensional Riemannian manifold with scalar
curvature bounded from below by

Sc(X) ≥ n(n − 1) = Sc(Sn).

Then the (n − 1)-dimensionalUryson width of X is bounded by a universal constant.
This means that there exists a continuous map from X to an (n − 1)-dimensional

polyhedral space P ,
f : X → P = Pn−1,

such that the pullbacks of all points have controllably bounded diameters, namely,

diam X ( f −1(p)) ≤ const for all p ∈ P.

for some universal constant const > 0 possibly (and undesirably) depending on n.

This conjecture says, in effect, that that n-dimensional manifolds X with Sc(X) ≥
σ > 0 “topologically spread” in at most n − 1 directions.

In fact, one expects that these X spread only in n − 2 direction which can be
formulated as follows.

A+. Conjecture. The above X admits a continuous map f to an (n − 2)-
dimensional polyhedral space P , such that diam X ( f −1(p)) ≤ const+ for all p ∈ P .

But the most attractive (and least tenable) is the conjecture A++ below which
claims that closed manifolds with Sc ≥ σ > 0 can be sliced by surfaces with small
areas according the following definition.

Slicings and Waists. An m-sliced n-cycle, m ≤ n, is an n-dimensional
pseudo-manifold P = Pn partitioned into m-slices Pq ⊂ P , which are the pullbacks
of the points of a simplicial map ϕ : P → Q where Q is an (n − m)-dimensional
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pseudomanifold and where all pullbacks Pq = ϕ−1(q) ⊂ P have dim(Pq) ≤ m,
q ∈ Q.

(Sometimes one insists that ϕ must be proper, hence, with compact pullbacks
ϕ−1(q), even if P is non-compact.)

The m-waist (mod 2), denoted waistm(h), of a homology class h ∈ Hn(X; Z2) is

the infimum of the numbers w,

such that X receives a Lipschitz map from a compact m-sliced cycle, φ : Pn → X ,
which represents h, i.e.

φ∗[P] = h

and
the images of all slices in X have m-volumes ≤w,

where these “volumes of the images” are counted with multiplicities (which is
unneeded for generically 1-1 maps.)

A++.Conjecture. Let X be a closed n-dimensional Riemannian manifold the
scalar curvature of which is bounded from below as earlier:

Sc(X) ≥ n(n − 1)(= Sc(Sn)).

Then the slicing area of the fundamental homology class [X ] ∈ Hn(X; Z2) is
bounded by

waist2[X ] ≤ const++.

(Ideally, one expects
const++ = waist2(Sn)

where waist2[Sn] = area(S2) = 4π by an Almgren’s theorem.)

The above conjectures can be interpreted as saying that X contains “many” small
subsets of dimensions 1 and/or 2.

For instance, A implies that X contains a topologically significant/representative
family of 1-dimensional subsets (graphs) with diameters � 1√

σ
.

This suggests the following.

(a) Conjecture. If Sc(X) ≥ σ > 0 and if X is a closed (compact without
boundary) manifold, then X contains a closedminimal geodesic of length≤ constn√

σ
, or,

at least, a stationary one-dimensional Z2-current of diameter (better length) ≤ constn√
σ

.

And A++ actually implies the following.

(a++) Conjecture. Closed manifolds X with Sc(X) ≥ σ > 0 contain closed
minimal surfaces (i.e. stationary two-dimensional Z2-currents) of areas ≤ constn

σ
.

Below is a weaker version of A which already imposes non-trivial topological
constraints on X .
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A−.Conjecture. If Sc(X) ≥ n(n − 1) then the filling radius of X is bounded
by

f il.rad(X) ≤ const−.

Definition of fil.rad. If X = (X, g) is closed Riemannian manifold then the filling
radius is equal to the infimum of R > 0, such that the cylinder X× = X × [0, 1)
admits a Riemannian metric g× with the following three properties.

•1 The restriction of ĝ to X = X0 × {0} ⊂ X × [0, 1) = X× is equal to g; more-
over,

distg×|X = distg.

This means that the g-shortest curves in X between all pairs of points in X minimise
the g×-lengths of such curves in X× ⊃ X .

•2 All points in X× lie within distance at most R from X ,

distg×(x×, X) ≤ R for all x× ∈ X×.

•3 The n-dimensional volumes of the submanifolds X × {t} ⊂ X × [0, 1) = X×,
t < 1, with respect to g× vanish in the limit for t → 0,

vol(X × {t}) → 0 for t → 1.

(The equivalence of this definition to the usual one follows from the filling volume
inequality see [9] and references therein).

Then the filling radius of a compact manifold X with boundary—our manifolds
may, a priori, have boundaries and/or to be incomplete—is defined as f il.rad of the
double of X along the boundary and f il.rad of an open X is defined via exhaustions
of X by compact submanifolds.

It is obvious that A+ ⇒ A ⇒ A− and thatA+ is optimal in a way.
Indeed, the product Xr = X0 × S2(r)), where X0 is, a compact manifold and

S2(r)) is the 2-sphere of small radius r → 0, (these spheres have Sc(S2(r)) = 2
r2 ),

has Sc(Xr ) ≥ ( 2
r2 − constX0) → +∞, while the (n − 2)-dimensional size/spread of

Xr is as large as that of X0.
Also one knows (see [17] at the end of this section and references therein) that

A++ ⇒ A−.

(It is plausible in view of [18] that A++ ⇒ A.)

On the other hand, it is not hard to show that if the isometry group of a Rieman-
nian manifold X̂ acts cocompactly on X̂ , i.e X̂/ isom(X̂) is compact, and if X̂ is
contractible, then

f il.rad(X̂) = ∞.
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Therefore, A− yields the following topological Sc > 0-non-existence corollary.

B. Conjecture. Closed manifolds X with contractible universal coverings X̃
admit no metrics with Sc > 0.

(Granted B, the non-strict inequality Sc(X) ≥ 0 implies that X Ricci flat by
Kazdan-Warner’s perturbation theorem (see [10]4). And since X̃ is contractible, the
universal covering X̃ is isometric to the Euclidean space R

n , n = dim(X), by the
Cheeger-Gromoll splitting theorem.)

Remarks and References
However plausible, none of the A-conjectures (above dimension 2) has been

confirmed except for A+ for 3-manifolds X with (apparently non-sharp) constant
const+ = 2π

√
6 (see [14] below).

On the other hand, B is known to hold for many manifolds X , starting from
the case of n-tori due to Schoen and Yau. Later B was proven by a use of twisted
Dirac operators5 for several classes of manifolds with “large” universal coverings
including those X which admit metrics with non-positive sectional curvatures.

Below are a few relevant papers where one can find further references.

In [11], the authors introduced their method of induction descent by minimal
hypersurfaces and proved non-existence of metrics with Sc > 0 on the n-tori6 and,
more generally, on n-dimensional manifolds X which admit smooth maps X →
T

n−2, such that the homology classes in H2(X) represented by the pull backs of
generic points are non-spherical.

Originally, this method was limited to n ≤ 7, but the techniques developed in [12,
13] apparently remove this limitation.

In [14] besides above mentioned A+ for 3-manifolds, we rule out complete
metrics with Sc > 0 on certain classes of manifolds, including

closed orientable n-dimensional spin7 manifolds X which admit continuous maps
to complete manifolds Y with non-positive sectional curvatures, such that the fun-
damental classes [X ] ∈ Hn(X) go to non-zero classes in Hn(Y ) under these maps.

The paper [15] presents a geometric perspective on the Dirac operator and soap
bubble methods in the study of scalar curvature and related problems.

4If a metric g0 with Sc ≥ 0 can’t be perturbed to g with Sc(g) > 0, then Ricci(g) = 0
5This means: Dirac operators with coefficients in some (possibly infinite dimensional) vector bun-
dles.
6This trivially implies non-existence of compactly supported perturbations with Sc > 0 of the
Euclidean metric on R

n .
7Amanifold of dimension n ≥ 3 is spin if the restrictions of the tangent bundle T (X) to all immersed
surfaces in X are trivial bundles.

Most (all?) known non-existence results for Sc > 0 obtained for spin manifolds more or less
automatically generalize tomanifoldswhose universal coverings are spin, i.ewhere T (X) trivializes
on all immersed 2-spheres in X .
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A chapter in this book [16]8 offers a friendly introduction to the Dirac operator
methods in the Sc > 0 problems.

The two papers [17] and [18] references therein give a fair idea of results and
ideas around the filling radius.

The authors of these two papers [19] and [20] are concerned with topological
versions of A+ for certain classes of manifolds X .

Rosenberg [21] is survey of topological obstructions to metrics with Sc > 0 on
spin manifolds X expressed in terms of indices of Dirac operators twisted with
C∗-algebras of π1(X).

Also obstructions for 4-dimensional manifolds X with non-vanishing Seiberg-
Witten invariants due to Taubes and Le Brun are described in this paper.

www.ihes.fr/~gromov/PDF/Morse-Spectra-April16-2015-.pdf
Gromov [22] is an overview of waists and related invariants which may bear some

relevance to Sc ≥ σ .

4 Extremality and Rigidity with Positive Scalar Curvature

The proof(s) of the above A-conjectures (let them be only approximately true) would
require constructions of certain maps or spaces which makes these conjectures dif-
ficult.

What is easier is getting upper bounds on the “size” of an X with Sc(X) ≥ σ > 0
by proving lower bounds on dilations of topologically significant maps from X to
(more or less) standard manifolds Y .

The first sharp bound of this kind was proved in [23] followed by [24] and [25]
where further references can be found.

What is proven in these papers can be expressed in the the following terms.

Extremality/Rigidity.ARiemannianmetric g on amanifoldY is called length
extremal if it can’t be enlarged without making the scalar curvature smaller some-
where. Namely, the inequalities

Sc(g) ≥ Sc(g0) and g ≥ g0

for a Riemannian metric g on Y imply

Sc(g) = Sc(g).

Then the stronger implication

[Sc(g) ≥ Sc(g0)]&[g ≥ g0] ⇒ [g = g]

8Also see Min-Oo, K-Area, mass and asymptotic geometry,
http://ms.mcmaster.ca/minoo/mypapers/crm.

www.ihes.fr/~gromov/PDF/Morse-Spectra-April16-2015-.pdf
http://ms.mcmaster.ca/minoo/mypapers/crm
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is qualified as length rigidity of g.9

CY-Example. If a closed manifold Y admits no metric with Sc > 0, then all g0
with Sc(g0) = 010 are extremal according to this definition.

Instances of such scalar flatmanifolds are flatRiemannianmanifolds (with univer-
sal coverings R

n) and also (simply connected) hypersurfaces Z ⊂ CPn+1 of degree
n + 2 and even n, with Ricci flat Calabi-Yau metrics, where non-existence of metrics
with Sc > 0 on these Z follows from the Lichnerowicz’s theorem.

Next, define area extremality and area rigidity by relaxing the inequality g ≥ g0,
which says in effect that lenghtg(C) ≥ lenghtg f (C) for all smooth curves C ⊂ Y ),
to

areag(�) ≥ areag( f (�))

for all smooth surfaces � ⊂ Y , where the extremality and rigidity requirements
remains the same: Sc(g) = Sc(g) and g = g.

Stronger versions of these extremalities and rigidities allow modifications of the
topology as well as geometry of Y , where the role of “topologically modified” Y
are played by a Riemannian manifold X = (X, g) and a map f : X → Y , where the
above inequalities are understood as

Sc(g)(x) ≥ Sc(g)( f (x)), lenghtg(C) ≥ lenghtgg( f (C))

and
areag(�) ≥ areag( f (�))

correspondingly.

Accordingly, the required conclusion for extremality is

Sc(g)(x) = Sc(g)( f (x)),

while both, the length and the area rigidities, signify that

lenghtg(C) = lenghtg( f (C)).

for all smooth curves C ⊂ X .
Of course, these definitions makes sense only for particular topological classes

of manifolds X and maps f , such for instance as the class {DEG �= 0} of orientable
manifolds of dimension n = dim(Y ) and C2-smooth maps with non-zero degrees.

C. Problem. Find verifiable criteria for extremality and rigidity, decide
which manifolds admit extremal/rigid metrics and describe particular classes
of extremal/rigid manifolds.

9Extremal manifolds define, in a way, the boundary of the domain {SC ≥ 0} of manifolds with
Sc ≥ 0.
10The condition Sc(g0) = 0 implies g0 Ricci(g0) = 0 on these Y by the Kazdan-Warner pertur-
bation theorem, see [10] in Sect. 3.
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For instance,

do all closed manifolds which admits metrics with Sc ≥ 0 also admit
(length) extremal metrics?

More specifically, prove (disprove?) the following.

C1. Conjecture. All compact Riemannian symmetric spaces are area extremal
in the class {DEG �= 0} and thosewhich have Ricci > 0 (this is equivalent to absence
of local R factors, and to is finiteness of fundamental group) are area rigid in this
class.

This conjecture was proved by Llarull (see [23] above) in the case Y = Sn , under
the additional assumption of X being spin.11

ThenMin-Oo [24] proved area extremality for Hermitian symmetric spaces in the
class
{SPIN ,DEG �= 0}, where the maps f : X → Y , besides having degrees �= 0, must
be spin.12

This was generalised by Goette and Semmelmann [25] who proved

area extremality in {SPIN ,DEG �= 0} of compact (here it means closed) Kähler
manifolds with Ricci ≥ 0, rigidity for Ricci ≥ 0.

Moreover, they establish

area rigidity in {SPIN ,DEG �= 0} of certain (non-Hermitian) compact sym-
metric spaces including those with non-vanishing Euler characteristics and also of
Riemannian metrics on S2m with positive curvature operators.

These extremality and rigidity theorems are proven in the non-Kählerian cases by
sharply evaluating the contribution from f ∗(S+(Y )) in theSchrödinger-Lichnerowicz
formula for theDirac operator on X twistedwith the f -pullback of the spinor+ bundle
S

+(Y ) which is, in the case where χ(Y ) �= 0 is confronted with the index theorem.
(The case of odd dimensional spheres S2m−1, which depends on an additional

argument(s) applied to maps X × S1 → S2m13 seems to apply only to metrics on
S2m−1 with constant sectional curvatures.)

11Since π1(SO(n)) = Z2 for n ≥ 3, there are at most two isomorphism classes of vector bundles
with rank ≥ 3 over connected surfaces � (exactly two for closed �), where the trivial bundle is
called spin and where bundles of rank < 3 are spin if their Whitney sums with trivial bundles are
spin. An orientable vector bundle V of over a topological space B is spin if the pullbacks of V
under continuous maps φ : � → B for all surfaces � are spin. A manifold X is spin if its tangent
bundle is spin.

The spin condition is necessary for the definition of the Dirac operator on X but some twisted
Dirac operators make sense on non-spin manifolds.
12A map f : X → Y is spin if the pullbacks φ∗(T (X)) for maps of surfaces, φ : � → X , satisfy

[φ∗(T (X)) is spin] ⇔ [(φ ◦ f )∗(T (Y )) is spin]
for all � and f . Equivalently, a map f between orientable manifolds is spin if the Whitney sum
T (X) ⊕ f ∗(T (Y )) is spin.

Obviously, the identity map id : Y → Y is spin and if Y is spin, e.g. Y = Sn , then
[ f : X → Y is spin] ⇔ [X is spin].

13Llarull uses the product metric on X × S1, where his calculation applies even though the scalar
curvature Sc(X × S1), which is ≥ Sc(S2m−1), may be smaller than Sc(S2m).
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And in theKähler case, this is donewith the “virtual square root” of the canonical
(complex) line bundle on Y instead of S

+(Y ).

Spin or non-Spin? In all of the above cases one can replace the spin condition
for f : X → Y by this condition for the corresponding map between the universal
coverings, f̃ : X̃ → Ỹ , where a version of Atiyah’s L2-index theorem applies.

Probably,
“spin” can be removed all together in these theorems

but this seems beyond reach of the present day methods.14

On the other hand, the spin condition is essential for the extremality in the class
{SPIN ,DEG Â �= 0}where the dimension of X can be greater than n = dim(Y ) and
where the condition deg( f ) �= 0 is replaced by degÂ( f ) �= 0, where the Â-degree
degÂ( f ) stands for the Â-genus of the f -pull back of a generic point y ∈ Y ,

degÂ( f ) = Â( f −1(y)).

(Here, strictly speaking, f must be smooth; if f is just continuous, this applies to
a smooth approximation of f , where the so defined Â-degree does not depend on a
choice of approximation.).

This implies for instance, that

the products of the above Y , e.g. of Y = Sn by the Calabi-Yau manifolds with
Â �= 0, e.g with Z from the above CY-example are area extremal in the class

{SPIN ,DEG Â �= 0} as well s in the class {S̃PIN ,DEG Â �= 0} where spin con-
dition is delegated to f̃ : X̃ → Ỹ .

Notice, however, that neither simply connected Calabi-Yau manifolds Z them-
selves nor their products by Y are extremal in the class {SPIN ,DEG �= 0}, at least
if dim(Z) ≥ 5.

Indeed the connected sums X = Z#(−Z), where “−” stands for the reversal of
orientation and where the obvious map Z#(−Z) → Z has degree 1, admit metrics
with Sc > 0 by Stolz’ theorem mentioned in Sect. 7. sleeker

It seems that there are two divergent, yet interconnected by bridges, branches
in the tree of Sc(X) ≥ 0, where a smoother and sleeker one involves differential
structure and depends on spin, while the other one is made of rougher staff such as
the homotopy classes of X .15

Alternatively, one can use the spherical suspension metric gS (of g on X ) on (the bulk of)
X × S1, which has Sc(gS) ≥ Sc(S2m) and thus allows a formal reduction of the 2m − 1 case to
that of 2m.
14Apparently, no single case of extremality of a closed simply connected manifold X of dimension
n ≥ 3 is amenable to the the minimal hypersurface techniques, except, may be (?) for X = S3.
15The smooth branch is manifested by Â and the mod 2 α-invariant in the index formula while
the rough branch is represented by the Chern character and supported by minimal hypersurfaces.
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Probably, the second branch can be transplanted to a harsh world inhabited by
singular spaces but fully cleaning off spin from this branch is by no means easy even
for smooth X .

Extremality and Rigidity of Products. It seems not hard to show16 that the Rie-
mannian products of the area extremal/rigid manifolds in the above examples are
area extremal/rigid which suggests to the following.

C2. Question. Are the Riemannian products of all area extremal/rigid
manifolds area extremal/rigid

Smoothing Lipschitz Maps. The length extremal/rigid manifolds in some homo-
topy class of smooth maps remain extremal/rigid in the corresponding class of Lip-
schitz maps f .

This can be proven by a smooth approximation of these f with a minor change
of their length dilations.

But
this is unclear for the area extremality and/or area rigidity,

since, conceivably(?) all smooth approximation f ′ of a Lipschitz map f : X → Y
may have area( f ′(�)) >> area( f (�)) for some �.

Normalisation by Scalar Curvature: Extremality/Sc and Rigidity/Sc. A map f :
X → Y between Riemannian manifolds X = (X, g) and Y = (X, g0) with positive
scalar curvatures, Sc(g), Sc(g0) > 0, is called length decreasing/Sc if it decreases
the length of the curves measured in the metrics Sc(X)−1g and Sc(g0)−1g0, i.e. if
it decreases the integrals of

√
Sc over all curves in X . Similarly one understand

decrease/Sc of areas of surfaces � ⊂ X under maps X → Y , etc.17

Accordingly, one defines length/area extremality/Sc of a Y as non existence of
strictly length/area decreasing/Sc maps X → Y in a given class of manifolds and
maps, while the rigidity/Sc signifies that all length/area non-increasing/Sc maps
f : X → Y are homotheties (similarities) with respect to the original metrics, i.e.
f ∗(g0) = const · g.
Since the “contribution of the twist” to the Schroedinger-Lichnerowicz formula

for the twisted Dirac opertor on X scales as Sc(X)−1, the arguments from the above
cited papers based on this formula deliver the corresponding extremality/Sc and
rigidity/Sc results. (This was pointed out in [26])

Category R+/Sc. Let this be the category of Riemannian manifolds with Sc > 0
and length (alternatively, area) non-increasing/Sc maps.

C3. Question. How much of the geometry of spaces with Sc > 0 can be recon-
structed in the category theoretic language ofR+/Sc?

Extremality beyond Sc ≥ 0. The condition Sc(g) ≥ 0 may be not indispensable
for extremality of g.

16I have not verified the proof in detail at this point.
17It may (or may not) be worthwhile to normalise by g � n(n − 1)Sc(X)−1g, n = dim(X), and
see what happens for n → ∞.
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For instance, the double of the unit hyperbolic disk is (kind of) extremal for the
natural C0-continuous metric on it and there are similar high dimensional examples.
But it is unclear if such metrics are ever smooth.

Relativisation of Non-existence Theorems for Sc > 0. Let Y be a closed length or
area extremal or rigid manifold in some class of smooth manifolds X and smooth
maps f : X → Y , where this class is invariant under homotopies of maps.

Then, most (all?) known Dirac operator obstructions to the existence of metrics
with Sc > 0 on closed manifolds X0 naturally extend to similar obstructions
to the existence of (strict) area decreasing/Sc maps in certain homotopy invariant
classes of maps X → Y , including X = X0 × Y → Y for (x0, y) �→ y.

For instance, one knows that (co)homologically symplectic manifolds X0 with
π2(X0) = 0 admit no metrics with Sc > 0 and the proof of this (see [15] cited in the
previous section) also implies that words

if Y is the above area-extremal manifold, e.g. Y = Sn , then no homologically
symplectic18 map f : X → Y , which, moreover, induces an isomorphism π2(X) →
π2(Y ), can be strictly area decreasing/Sc.

This suggests the following.

C4. Conjecture. Let g be a metric on X and f0 : X → Y be a (smooth?) strictly
length (area?) decreasing/Sc map in this class.

Then there exists a smooth map f homotopic to f0 transversal to a point
y0 ∈ Y , such that the f -pullback submanifold f −1(y0) ∈ X admits a metric
with Sc > 0.

Also other properties, e.g. extremality, of manifolds X with Sc(X) > 0 may have
counterparts for length and area decreasing/Sc maps X → Y and, furthermore, for
foliations on X .

C5. Question. Are infinite dimensional counterparts of compact symmetric
spaces, e.g. the Hilbert sphere S∞, extremal/rigid in some class(es) of perturbations
of their metrics?

18A smooth proper map between orientable manifold, f : X → Y , is homologically symplectic if
the difference of the dimensions n0 = n − m for n = dim(X) and m = dim(Y ) is even and if there
exists a closed 2-form ω on X such that the integrals of ω

n0
2 over the f -pullbacks of generic points

y ∈ Y do not vanish.
In other words, the real fundamental cohomology class [X ]◦ ∈ Hn

comp(X; R) with compact
support is equal to the � product of the f -pullback of [Y ]◦ ∈ Hm

comp(Y, R) and the n0
2 th�power

of the class [ω] ∈ H2(X; R),

[X ]◦ = f ∗([Y ]◦) � [ω] n0
2 .

.
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5 Extremality and Gap Extremality of Open Manifolds.

Let U ⊂ Y be an open subset in a extremal or rigid Riemannian manifold Y where
the extremality/rigidity for this Y follows by the twisted Dirac operator argument
from the previous section. Then the same argument yields the following.

 If the complement Z = Y \ U is non-empty, yet LC-negligible (explained
below) then no complete orientable Riemannian manifold admits a smooth
area non-increasing/Sc map f : X → U , which has non-zero degree19 and the lift of
which to the universal coverings, f̃ : X̃ → Ũ , is spin.

LC-negligible Sets . A piecewise smooth polyhedral subset Z in a Riemannian
manifold Y is called LC-negligible if the Levi-Civita connection on the tangent
bundle of X restricted to Z is split trivial. For instance,

• finite subsets in Y are LC-negligible;
• piecewise smooth graphs Z ⊂ Y with trivial monodromies around the cycles,

e.g. disjoint unions of trees, are LC-negligible;
• simply connected isotropic (e.g.Lagrangian) submanifolds in Kähler manifolds

are LC-negligible.

This definition extends to general closed subsets Z , such as Cantor sets, for
instance, by requiring that the monodromies along smooth curves C in the ε-
neighbourhoods of Y are o(ε· length (C)) as ε → 0 but the geometry behind this
definition needs to be clarified.

D1. Problem. Study essential properties, such as the Hausdorff dimensions, of
these subsets Z ⊂ Y and find cases (if there are any) where  remains valid for
small, yet non-LC-negligible Z ⊂ Y , e.g. for (generic) smooth curves Z in Y .

Notice in this regard that a simple surgery type argument (see Stolz’ paper [5]
cited in Sect. 2 and references therein) shows that

• if Z is equal to the k-skeleton T k of a smooth triangulation T of a compact
Riemannian manifold (Y, g0), for k ≥ 2, then U = Y \ Z admits a complete metric
g ≥ g0 with Sc(g) ≥ σ0 = σ0(Y, Z) > 0.

Moreover, it is easy to show that

the complementsUε = Y \ T k
ε of the k-skeleta of the “standard fat” ε-refinements20

of T admit complete Riemannian metrics gε ≥ g the scalar curvatures of which for
k ≥ 2 satisfy

Sc(gε) ≥ const
1

ε2

for some constant const = const (Y, T ) > 0.
Thus  fails to be true, for Z = T k

ε , k ≥ 2, and small (how small?) ε.

19Maps f : X → Y of non-zero degree, by definition, must be equidimensional and proper.
20It is more practical to start with a cubilation T of Y which can be canonically ε-refined for ε = 1

i ,
i = 2, 3, . . . , by subdividing each m-cube into im -sub-cubes in an obvious way.
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On the other hand, the torical band width inequality from the next section shows
that if, for instance, Z is a codimension two torus in Y , e.g. Z = T

2 ⊂ S4, then the
complement U = Y \ Z admits no complete metrics with Sc ≥ σ > 0 whatsoever
and the same applies to a large (how large) class of codimension two polyhedra
Z ⊂ Y with contractible universal coverings.

Non-existence of complete metrics g ≥ g0 with Sc > σ0 on the above U =
(U, g0) with Sc(g0) = σ0 may be interesting in its own right but this can’t be
regarded as extremality of g0, since a comparison of the manifolds (U, g0), which
have bounded diameters with their competitors (U, g) of infinite size is patently
unfair. The true extremity issue for these U , thus, remains unresolved.

D2. Question. Do there ever exist length extremal domains U ⊂ Y , U �= Y , in
closed connected Riemannian manifolds Y of dimensions ≥ 3?

For instance, is the the sphere S3 minus a point (or the 3-torus minus a point)
extremal?

We still do not know the answer but, on the other hand, the followingwarped prod-
uct construction sometimes delivers examples of both complete and non-complete
extremal and rigid manifolds (compare §12 in [14] cited in Sect. 3 and [27] cited
below).

Let Y0 = (Y0, g0) be a Riemannian manifold with constant scalar curvature σ0

and let g1 = ϕ2g0 + dt2 be a Riemannian metric on Y1 = Y × (l−, l+) for −∞ ≤
l− < l+ ≤ ∞, for some smooth function ϕ = ϕ(t) > 0 for l− < t < l+.

Then, by elementary calculation,

�� Sc(g) = σ0

ϕ2
− 2n

ϕ′′

ϕ
− n(n − 1)

ϕ′2

ϕ2
, where n = dim(Y0).

Now, let g have constant scalar curvature, say Sc(g1) = σ1 for a given σ1 ≥ 0,
and prescribe: ϕ(0) = 1 and ϕ′(0) = 0.

Then ��, regarded as an ODE and rewritten as

f ′′ = −1

2
(n + 1) f ′2 + σ0

2ne2 f
− σ1

2n
for f = logϕ,

admits a unique solution f on some maximal (extremal) open interval (lext− , lext+ )

beyond which the solution does not extend.

Examples. (a) If Y0 = Sn and σ1 = n(n + 1), then Y1 is equal to Sn+1 minus two
opposite points.

(b) If Y0 = R
n and σ1 = 0, then Y1 = R

n+1.

(c) If Y0 = R
n , σ1 = n(n + 1) = Sc(Sn+1) and n = 1, then Y1 is equal the uni-

versal covering of S2 minus two opposite points.
In general, the manifold (Y1, g1) is uniquely characterised by the following three

properties.
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[�n(n+1)] The scalar curvature of Y1 is everywhere equal to n(n + 1) for n =
dim(Y1) − 1.

[�O(n)�Rn ] The isometry group of Y1 is I so(Rn) = O(n) � R
n times Z2. (This

Z2 corresponds to the involution t ↔ −t .)

[�2π/n+1] The band width of Y1 is 2π
n+1 , where this width is understood in the

present case as the distance between the two (one point) boundary components of Y1

in the metric completion Ȳ1 ⊃ Y1.
(The band-like shape of Y1 is best seen for dim(Y1) = 2, where this Y1 is equal

to the universal covering of the doubly punctured sphere S2.)
Alternatively, one might say that the in-radius of Yi is equal to π

n+1 :

there are closed compact balls in Y1 of all radii R < π
n+1 but no ball of

radius ≥ π
n+1 is compact.

Gap Extremality. We do not know if the above spheres minus pairs of points are
extremal for n ≥ 2 but the Euclidean spaces R

m are definitely not length extremal
starting from m = 2.

In fact, there are (obvious, O(m)-invariant) metrics g ≥ gEucl on R
m with

Sc(g1) > 0 for all m ≥ 2.
On the other hand,

(∗) nometric g ≥ gEucl onR
m mayhave Sc(g) ≥ ε > 0. (See [15] cited in Sect. 3.)

This suggests the following weaker version of extremality for non-compact man-
ifolds which we call gap extremality.

A metric g0 on Y is ε-gap length extremal if no g ≥ g0 on Y satisfies

Sc(g) − Sc(g0) > ε.

Then g0 is called gap length extremal if it is ε-gap length extremal for all ε > 0
(0-gap extremal=extremal).

Similarly one defines area gap extremality and gap extremality for classes of
maps f : X → Y . (But I am not certain what a workable definition of normalized
gap extremality/Sc should be.)

Whenever the twisted Dirac operator argument from the previous section yields
area extremality of a closed manifold Y , e.g. if Y = Sn or Y = CPn , this argument,
combined with that from [15] (cited in Sect. 3) for R

m , also delivers

(∗∗) gap area extremality of Ym = Y × R
m for all m = 1, 2, . . ., as well as this

extremality for smooth proper spin maps f : X → Ym of non-zero degrees.

If a smooth proper spin map f : X → Ym of non-zero degree decreases the areas
of all surfaces � ⊂ X , then, given ε > 0, there exists a point x ∈ X , such that

Sc(X)(x) − Sc(Y ′)( f (x)) < ε.
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D3. Question. Does gap extremality is always stable under Y � Y × R
m?

(Beware of dim(Y ) = 4.)

One can’t discard of ε for m ≥ 2 but the true area (or, at least length) extremality
of Y ′ = Y × R (that allows ε = 0) may be provable by some twisted Dirac operator
argument. For instance, if Y = T

n this follows from theorem 6.12 in [14] (cited in
Sect. 3). Alternatively, one might use minimal hypersurfaces and soap bubble in X
the f -images of which separate the two ends in Y ′ = Y × R but then one would face
a possibility of non-compact minimal hyper surfaces in X and would be obliged to
resort to imposing extra assumptions on X , e.g. uniform two sided bounds on the
sectional curvatures of X .

Finally, let us look at the manifold Y1, which has the band width 2π
n+1 , in the above

Example (c).
It is plausible that this Y1 is length gap extremal but not length extremal starting

from D = dim(Y1) = 3.
And what we definitely know is that

the quotient space Y1/Z
n = T

n × (− π
n+1 ,

π
n+1 ), n + 1 = dim(Y1), is length

extremal.

We shall see the reason for this in the next section, where we shall also explain
the current status of the rigidity problem for these manifolds.

6 Bounds on Widths of Bands with Positive Curvatures

Let us start with the following question which, on the face of it, has nothing to do
with scalar curvature.

Given a smooth n-dimensional manifold X immersed21 into a complete Rieman-
nian manifold Y denote by rad⊥(X ↪→ Y ) the maximal R, such that the normal
exponential map

exp⊥ : T ⊥(X) = T (Y )|X � T (X) → Y,

is locally injective on the subbundle B⊥(R)(X) ⊂ T ⊥(X) of open normal R-balls
B N−n

x (R) ⊂ T ⊥(X), x ∈ X .
(If the ambient space Y = R

n , then rad⊥(X; R
n) is equal to the reciprocal of the

supremum of the principal curvatures of X .)
Take the supremum of these radii over all immersions f : X ↪→ Y , set

suprad⊥(X; Y ) = sup
f

rad⊥(X ↪→
f

Y )

and let

21 A smooth map X → Y is an immersion if it is a diffeomorphism of small neighbourhoods in X
to smooth submanifolds in Y .
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suprad⊥
N (X) = sup

f◦
rad⊥(X ↪→

f◦
R

N ),

where the latter “sup” is taken over all immersion f◦ from X to the unit ball
B N (1) ⊂ R

N .
(The notation suprad⊥(X; B N (1)) would be unjustified, since the image of the

exponential map may be not contained in B N (1).)

E1. Problem. Evaluate suprad⊥
N (X) in terms of the topology of X .

Examples. (a) It is obvious that suprad⊥
N (X) ≤ 1 for all closed manifolds X ,

where the equality holds if and only if X is diffeomorphic to Sn and N > n.
(b) Let Xk is diffeomorphic to the product of k spheres,

Xk = Sn1 × . . . × Snk , nk ≥ 1.

Then

suprad⊥
N (X) ≥ 1√

k
for all N ≥ (n1 + 1) + . . . + (nk + 1).

But we do not know, for instance, whether

suprad⊥
N (Xk) → 0 for N = dim(Xk) + 1 and k → ∞.

or, on the contrary, if
suprad⊥

N (X) ≥ ρ0

for all manifolds X , (e.g. for all Xk) all sufficiently large N ≥ N (X) and some
universal constant ρ0 > 0, say ρ0 = 0.001.

All known upper bounds on suprad⊥
N (X)—am I missing something obvious?

exclusively apply to manifolds X which admit no metrics with Sc > 0.
A simple way to obtain such a bound is as follows.
1.Scale B N (1) → B N ( 12 ), project B N ( 12 ) to SN from the south pole of SN and

observe that this distorts the curvatures of submanifolds X in the ball B N (1) by a
finite amount independent of X and N .

2. Apply the Gauss formula to X ↪→ SN and thus show that the supremum of the
principal curvatures of X in SN satisfies

supcurv(X ↪→ SN ) ≥
√

n − 1

N − n

and therefore,

suprad⊥
N (X) ≤ const · N − n√

n − 1
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for all n-dimensional manifolds X which admit no metrics with Sc > 0 and for some
constant const ≤ 100. (See [27] cited below for details.)

It follows, for instance, that there are

exotic spheres �n of dimensions n = 9, 17, 25, 33, . . ., such that

suprad⊥
n+1(�

n) ≤ 100√
n − 1

,

but one has no idea how sharp this inequality is and if there are similar inequalities

for exotic spheres which admit metrics with Sc > 0.

The above also applies to toriTn , since these admit no metrics with Sc > 0 either,
but here the following better (but, probably, still very far from being sharp) inequality
is available.

suprad⊥
n+1(T

n) ≤ 2π

n + 1
.

This is proven again by passing to Sn+1, where all we use of the geometry of Sn+1

is the inequality Sc(Sn+1) ≥ n(n + 1). (Isn’t it amazing that there is no apparent
direct proof of a much stronger bound on rad⊥(Tn ⊂ Bn+1(1)).)

Namely, the above bound on suprad⊥
n+1(T

n) trivially follows from the following.

Torical Band Width Inequality. Let g be a metric with Sc(g) ≥ n(n +
1) = Sc(Sn+1) on the torical band (cylinder) T

n × [−1, 1]. Then the distance
between the two boundary components of this band satisfies

[›± < 2π
n+1] distg(T

n × {−1}, T
n × {1}) <

2π

n + 1
.

This is proven in [27] with a relative version of the Schoen-Yau minimal hyper-
surface method.

Besides a bound on suprad⊥
n+1(T

n), the inequality [›± < 2π
n+1 ] (trivially) implies

that

thewarped productmetricϕ2(t)gTn + dt2 onT
n × (− π

n+1 ,
π

n+1 )with Sc = n(n +
1), which was introduced in the previous section, is length extremal.

Also, the argument in [27] yields length rigidity of this metric for n ≤ 6, while the
general case needs an elaboration on recent results on “irrelevance of singularities”
of minimal hypersurfaces proved in the papers [12] and/or [13] cited in Sect. 3.

7 Extremality and Rigidity of Convex Polyhedra

Let P ⊂ R
n be a compact convex polyhedron with non-empty interior, let Qi ⊂ P ,

i ∈ I , denote its (n − 1)-faces and let
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∠i j (P) = ∠(Qi , Q j )

denote its dihedral angles.
Say that P is extremal if all convex polyhedra P ′ which are combinatorially

equivalent to P and which have

∠i j (P ′) ≤ ∠i j (P) for all i, j ∈ I,

necessarily satisfy
∠i j (P ′) = ∠i j (P).

It is known—the proof is elementary—that

the simplices and the rectangular solids are extremal and also all P with
∠i j (P) ≤ π

2 , are extremal.

But it is unclear (at least to the present author) what are (if any) non-extremal P .
What we are truly interested in, however, is extremality (and rigidity) of P under

transformations which keep the faces Qi convex (rather than flat) or, even better,
mean convex, i.e. keeping their mean curvatures non-negative.

Thus, we say that P is mean convexly extremal if there is no P ′ ⊂ R
n diffeomor-

phic to P and such that
• the faces Q′

i ⊂ P ′ corresponding to all Qi ⊂ P have mean.curv(Q′
i ) ≥ 0,

• the dihedral angles of P ′, that are the angles between the tangent spaces Tp′(Q′
i )

and Tp′(Q′
j ) at the points p′ on the (n − 2)-faces Q′

i j = Q′
i ∩ Q j

′, satisfy

∠i j (P ′) ≤ ∠i j (P),

• this angle inequality is strict at some point, i.e. there exits p0
′ ∈ Q′

i j in some
Q′

i j , such that
∠(Tp0 ′(Q′

i ), Tp0 ′(Q′
j )) < ∠i j (P).

F1.Question.Are all extremal convexpolyhedra P aremeanconvexly extremal?
It is not even known if the regular 3-simplex is mean convexly extremal, but

the mean convex extremality of the n-cube

follows by developing the cube P into a complete (orbi-covering) manifold P̂ home-
omorphic to R

n by reflecting P in the faces, approximating the natural continuous
Riemannian metric metric on P̂ by a smooth one with Sc ≥ ε > 0 (see [28]) and
appealing to gap extremality of R

n stated in Sect. 5.
And the same argument yields (see [28]) the following

[ ∗] Let a Riemannian metric g on the n-cube P satisfy:
∗0 Sc(g) ≥ 0.
∗1 mean.curvg(Qi ) ≥ 0.
∗2 ∠i j (P, g) ≤ π

2 .
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Then, necessarily, Sc(g) = 0, mean.curvg(Qi ) = 0 and ∠i j (P, g) = π
2 .

Probably, these equalities imply that P is isometric to a Euclidean rectangular
solid but the approximation/smoothing is no good for proving this kind of rigidity.

The main merit of [ ∗] is that it provides a test for Sc ≥ 0 in all Riemannian
manifolds X :

Sc(X) ≥ 0 if and only if no cubical domain P ⊂ X satisfies

[mean.curvg(Qi ) > 0]&[∠i j (P, g) ≤ π

2
].

This suggests a possibility of defining Sc(X) ≥ 0 for some singular spaces, X .
e.g. for Alexandrov spaces with sectional curvatures bounded from below.

F2. Conjecture All known (and expected) properties of Riemannian manifolds
with Sc ≥ 0, which have no “spin" attached to their formulations, generalise to
Alexandrov’s spaces.

For instance, most probably,

if an n-dimensional Alexandrov space X with curvatures bounded from below
has Sc > 0 at all regular points x ∈ X , (or if the volumes of all infinitesimally small
balls in X are bounded by the volumes of such Euclidean balls) then

every continuous map from X to a space Y with C AT (0) universal
covering (i.e. an Alexandrov’s space with non-positive sectional curvatures)
contracts to an (n − 1)-dimensional subset in Y .

If true, this would imply that (suitably defined) harmonic maps X → Y must nec-
essarily have (n − 1)-dimensional images, which suggests a (non-local?)
Weitzenboeck-Bochner type formula in this context and a definition of Sc > 0 via
spectral properties of small (large?) balls (cubes?) in X .
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Geometry and the Quantum

Alain Connes

1 Introduction

The ideas of noncommutative geometry are deeply rooted in both physics, with the
predominant influence of the discovery of Quantum Mechanics, and in mathematics
where it emerged from the great variety of examples of “noncommutative spaces”
i.e. of geometric spaces which are best encoded algebraically by a noncommutative
algebra.

It is an honor to present an overview of the state of the art of the interplay of
noncommutative geometry with physics on the occasion of the celebration of the
centenary of Hilbert’s work on the foundations of physics. Indeed, the ideas which
I will explain, those of noncommutative geometry (NCG) in relation to our model
of space-time, owe a lot to Hilbert and this is so in two respects. First of course by
the fundamental role of Hilbert space in the formalism of Quantum Mechanics as
formalized by von Neumann, see Sect. 1.1. But also because, as explained in details
in [1, 2], one can consider Hilbert to be the first person to have speculated about a
unified theory of electromagnetism and gravitation, we come to this point soon in
Sect. 1.2.

1.1 The Spectral Point of View

At the beginning of the eighties, motivated by the exploration of themany new spaces
whose algebraic incarnation is noncommutative, I introduced a new paradigm, of
spectral nature, for geometric spaces. It is based on the Hilbert space formalism of
Quantum Mechanics and on mathematical ideas coming from K-theory and index
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theory. A geometry is given by a “spectral triple” (A,H,D) which consists of an
involutive algebra A concretely represented as an algebra of operators in a Hilbert
space H and of a (generally unbounded) self-adjoint operator D acting on the same
Hilbert spaceH. The main conceptual motivation came from the work of Atiyah and
Singer on the index theorem and their realization that the Hilbert space formalism
was the proper setting for “abstract elliptic operators” [3].

To fix ideas: a compact spin Riemannian manifold is encoded as a spectral triple
by letting the algebra of functions act in the Hilbert space of spinors while the Dirac
operator D plays the role of the inverse line element, as we shall amply explain
below. But the key examples that showed, very early on, that the relevance of this
new paradigm went far beyond the framework of Riemannian geometry comprised
duals of discrete groups, leaf spaces of foliations and deformations of ordinary spaces
such as the noncommutative tori which were themselves a prime example of non-
commutative geometric spaces as shown in [4].

In the middle of the eighties it became clear that the new paradigm of geometry,
because of its flexibility, provided a new perspective on the geometric interpreta-
tion of the detailed structure of the Standard model and of the Brout-Englert-Higgs
mechanism. Over the years this new point of view has been considerably refined and
is now able to account for the extremely complicated Lagrangian of Einstein gravity
coupled to the standard model of particle physics. It is obtained from the spectral
action developed in our joint work with Chamseddine in [5]. The spectral action is
the only natural additive spectral invariant of a noncommutative geometry.

The noncommutative geometry dictated by physics is the product of the ordinary
4-dimensional continuum by a finite noncommutative geometry which appears natu-
rally from the classification of finite geometries of KO-dimension equal to 6 modulo
8 (cf. [6, 7]). The compatibility of the model with the measured value of the Higgs
mass was demonstrated in [8] due to the role in the renormalization of the scalar field
already present in [9]. In [10, 11], with Chamseddine and Mukhanov, we gave the
conceptual explanation of the finite noncommutative geometry from Clifford alge-
bras and obtained a higher form of the Heisenberg commutation relations between p
and q, whose irreducible Hilbert space representations correspond to 4-dimensional
spin geometries. The role of p is played by the Dirac operator and the role of q by
the Feynman slash of coordinates using Clifford algebras. The proof that all spin
geometries are obtained relies on deep results of immersion theory and ramified
coverings of the sphere. The volume of the 4-dimensional geometry is automati-
cally quantized by the index theorem; and the spectral model, taking into account
the inner automorphisms due to the noncommutative nature of the Clifford algebras,
gives Einstein gravity coupled with a slight extension of the standard model, which
is a Pati-Salam model. This model was shown in our joint work with Chamseddine
and van Suijlekom [12, 13] to yield unification of coupling constants.
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1.2 Gravity Coupled with Matter

As explained in detail in [1], one can consider Hilbert as the first to have fancied a
unified theory of electromagnetism and gravitation. According to [1], in the course
of pursuing this agenda, Hilbert reversed his original idea of founding all of physics
on electrodynamics, instead treating the gravitational field equations as more funda-
mental. We have, in our investigations with Ali Chamseddine of the fine structure
of space-time which is revealed by the Brout-Englert-Higgs mechanism, followed
a parallel path: the starting point was that the NCG framework for geometry, by
allowing to treat the discrete and the continuum on the same footing gives a clear
geometric meaning to the Brout-Englert-Higgs sector of the Standard Model, as the
signal of a discrete (but finite) component of the geometry of space-time appearing
as a fine structure which refines the usual 4-dimensional continuum.

The action principle however was at the beginning of the theory still of traditional
form (see [14]). In our joint work with Chamseddine [5] we understood that instead
of imitating the traditional form of the Yang-Mills action, one could obtain the
full package of the Einstein-Hilbert action1 of gravity coupled with matter by a
fundamental spectral principle. In the language of NCG this principle asserts that
the action only depends upon the “line element” i.e. the inverse2 of the operator
D. It follows then from elementary considerations of additivity for disjoint unions
of spaces that it must be of the form Tr(f (D/�)) where f is a function and �

is a parameter having the same dimension (that of an energy) as the inverse line
element D.

1.3 Possible Relevance for Quantum Gravity

It will by now be clear to the reader that the point of view adopted in this essay is to
try to understand from a mathematical perspective, how the perplexing combination
of the Einstein-Hilbert action coupled with matter, with all the subtleties such as the
Brout-Englert-Higgs sector, the V-A and the see-saw mechanisms etc. can emerge
from a simple geometric model. The new tool is the spectral paradigm and the new
outcome is that geometry does emerge on the stage where Quantum Mechanics
happens, i.e. Hilbert space and linear operators.

The idea that group representations as operators in Hilbert space are relevant to
physics is of course very familiar to every particle theorist since the work of Wigner
and Bargmann. That the formalism of operators in Hilbert space encompasses the
variable geometries which underly gravity is the leitmotiv of our approach.

1There is a well-known “priority episode” between Hilbert and Einstein which is discussed in great
detail in [1, 2] and whose outcome, called the Einstein-Hilbert action, plays a key role in our
approach.
2In the orthogonal complement of its kernel.
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In order to estimate the potential relevance of this approach to Quantum Gravity,
one first needs to understand the physics underlying the problemofQuantumGravity.
There is an excellent article for this purpose: the paper [15] explains how the problem
arises when one tries to apply the perturbative method (which is so successful in
quantum field theory) to the Lagrangian of gravity coupled with matter. Quoting
from [15]: “Quantization of gravity is inevitable because part of the metric depends
upon the other fields whose quantum nature has been well established”.

Two main points are that the presence of the other fields forces one, due to renor-
malization, to add higher derivative terms of the metric to the Lagrangian and this
in turns introduces at the quantum level an inherent instability that would make the
universe blow up. This instability is instantly fatal to an interacting quantum field
theory. Moreover primordial inflation prevents one from fixing the problem by dis-
cretizing space at a very small length scale. What our approach permits is to develop
a “particle picture” for geometry; and a careful reading of the present paper should
hopefully convince the reader that this particle picture stays very close to the inner
workings of the Standard Model coupled to gravity. For now the picture is limited
to the “one-particle” description and there are deep purely mathematical reasons to
develop the many particles picture. The main one is that the root of the one-particle
picture, described by spectral triples, is KO-homology and the dual topological KO-
theory (see Sect. 3.4). The duality between the two theories is the origin of the quanta
of geometry given by irreducible representations of the higher Heisenberg relation
described in Sect. 4 below. As already mentioned in [16], algebraic K-theory, which
is a vast refinement of the topological theory, is begging for the development of a
dual theory and one should expect profound relations between this dual theory and
the theory of interacting quanta of geometry. As a concrete point of departure, note
that the deepest results on the topology of diffeomorphism groups of manifolds are
given by the Waldhausen algebraic K-theory of spaces and we refer to [17] for a
unifying picture of algebraic K-theory. For this paper, we now we discuss in depth
the problem of the co-existence of the discrete and the continuum in geometry.

2 Prelude: The Discrete and the Continuum

In this preliminary sectionwe shall discuss two solutions of themathematical problem
of treating the continuous and the discrete in a unifiedmanner.We first briefly present
Grothendieck’s solution: the notion of a topos which allowed him to treat in a unified
manner ordinary topological spaces and the combinatorial structures arising in the
world of arithmetic.We continuewith a text ofGrothendieck onRiemann as a prelude
for a re-reading of Riemann’s inaugural lecture. We then explain how the quantum
formalism provides another solution to the coexistence of discrete and continuous
variables.

http://dx.doi.org/10.1007/978-3-319-64813-2_3
http://dx.doi.org/10.1007/978-3-319-64813-2_4
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2.1 Grothendieck’s Solution: Topos

Grothendieck’s solution to the problem of treating the continuous and the discrete
in a unified manner is the notion of a Topos. It does reconcile the usual idea of
a topological space with that of a discrete combinatorial diagram. One does not
concentrate on the space X itself, with its points etc. but rather on the ability of X
to define a variable set Zx depending on x ∈ X . When X is an ordinary topological
space such a “variable set” indexed by X is simply a sheaf of sets on X . But this
continues to make sense starting from an abstract combinatorial diagram! In short
the key idea here is the idea of replacing X by its role as a parameter space.

“Space X → Category of variable sets with parameter in X ”

The abstract categories of such “sets depending on parameters” fulfill almost all
properties of the category of sets, except the axiom of the excluded middle, and
encode in a faithful manner a topological space X through the category of sheaves
of sets on X . This new idea is amazing in its simplicity, its connection with logics
and the richness of the new class of spaces that it uncovers. In Grothendieck’s own
words (see “Récoltes et Semailles” [18, 19]) one can sense his amazement:

Le “principe nouveau” qui restait à trouver, pour consommer les épousailles promises par
des fées propices, ce n’était autre aussi que ce “lit” spacieux qui manquait aux futurs époux,
sans que personne jusque-là s’en soit seulement aperçu. . .

Ce “lit à deux places” est apparu (comme par un coup de baguette magique . . . ) avec
l’idée du topos. Cette idée englobe, dans une intuition topologique commune, aussi bien
les traditionnels espaces (topologiques), incarnant le monde de la grandeur continue, que
les (soi-disant) “espaces” (ou “variétés”) des géomètres algébristes abstraits impénitents,
ainsi que d’innombrables autres types de structures, qui jusque-là avaient semblé rivées
irrémédiablement au “monde arithmétique” des agrégats “discontinus” ou “discrets”.

I would like to stress a key point of Grothendieck’s idea of topos by using a
metaphor. From his point of view, one understands a geometric space not by directly
staring at it: no, the space remains at the back of the stage as a hidden schemer which
governs the variability of every object at the front of the stage which is occupied by
the usual suspects such as “abelian groups” for instance. But once one studies these
usual suspects in their new environment one finds that their fine properties reveal,
from their relations with ordinary abelian groups, the cohomology of the hidden
parameter space. Here the word “ordinary” means “independent of the parameter”
and thus ordinary sets form part of the new set theory. This makes sense because a
Grothendieck topos admits a unique morphism to the topos of sets.

2.2 Riemann

In the prelude of “Récoltes et Semailles” [18], Alexandre Grothendieck makes the
following points on the search for relevant geometric models for physics and on
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Riemann’s lecture on the foundations of geometry: (see Appendix for the English
translation)

Il doit y avoir déjà quinze ou vingt ans, en feuilletant le modeste volume constituant l’œuvre
complète de Riemann, j’avais été frappé par une remarque de lui “en passant”. Il y fait
observer qu’il se pourrait bien que la structure ultime de l’espace soit “discrète”, et que les
représentations “continues” que nous nous en faisons constituent peut-être une simplification
(excessive peut-être, à la longue . . .) d’une réalité plus complexe; que pour l’esprit humain,
“le continu” était plus aisé à saisir que “le discontinu”, et qu’il nous sert, par suite, comme
une “approximation” pour appréhender le discontinu.

C’est là une remarque d’une pénétration surprenante dans la bouche d’un mathématicien, à
un moment où le modèle euclidien de l’espace physique n’avait jamais encore été mis en
cause ; au sens strictement logique, c’est plutôt le discontinu qui, traditionnellement, a servi
comme mode d’approche technique vers le continu.

Les développements enmathématiquedes dernières décennies ont d’ailleursmontré une sym-
biose bien plus intime entre structures continues et discontinues, qu’on ne l’imaginait encore
dans la première moitié de ce siècle. Toujours est-il que de trouver un modèle “satisfaisant”
(ou, au besoin, un ensemble de tels modèles, se “raccordant” de façon aussi satisfaisante
que possible. . .), que celui-ci soit “continu”, “discret” ou de nature “mixte” – un tel travail
mettra en jeu sûrement une grande imagination conceptuelle, et un flair consommé pour
appréhender et mettre à jour des structures mathématiques de type nouveau.

Ce genre d’imagination ou de “flair” me semble chose rare, non seulement parmi les physi-
ciens (où Einstein et Schrödinger semblent avoir été parmi les rares exceptions), mais même
parmi les mathématiciens (et là je parle en pleine connaissance de cause).

Pour résumer, je prévois que le renouvellement attendu (s’il doit encore venir. . .) viendra
plutôt d’un mathématicien dans l’âme, bien informé des grands problèmes de la physique,
que d’un physicien. Mais surtout, il y faudra un homme ayant “l’ouverture philosophique”
pour saisir le nœud du problème. Celui-ci n’est nullement de nature technique, mais bien un
problème fondamental de “philosophie de la nature”.

After reading the above text of Grothendieck, let us go to the relevant part of
Riemann’s Habilitation lecture on the foundations of geometry and explain why his
great insight is, together with the advent of quantum mechanics, the best prelude to
the new paradigm of spectral triples, the basic geometric concept in NCG.

Wenn aber eine solche Unabhängigkeit der Körper vom Ort nicht stattfindet, so kann man
aus den Massverhältnissen im Grossen nicht auf die im Unendlichkleinen schliessen; es
kann dann in jedem Punkte das Krümmungsmass in drei Richtungen einen beliebigenWerth
haben, wenn nur die ganze Krümmung jedes messbaren Raumtheils nicht merklich von
Null verschieden ist; noch complicirtere Verhältnisse können eintreten, wenn die voraus-
gesetzte Darstellbarkeit eines Linienelements durch die Quadratwurzel aus einem Differen-
tialausdruck zweitenGrades nicht stattfindet. Nun scheinen aber die empirischen Begriffe, in
welchen die räumlichen Massbestimmungen gegründet sind, der Begriff des festen Körpers
und des Lichtstrahls, im Unendlichkleinen ihre Gültigkeit zu verlieren; es ist also sehr wohl
denkbar, dass die Massverhältnisse des Raumes im Unendlichkleinen den Voraussetzungen
der Geometrie nicht gemäss sind, und dies würde man in der That annehmen müssen, sobald
sich dadurch die Erscheinungen auf einfachere Weise erklären liessen.

Die Frage über die Gültigkeit der Voraussetzungen der Geometrie im Unendlichkleinen
hängt zusammen mit der Frage nach dem innern Grunde der Massverhältnisse des Raumes.
Bei dieser Frage, welche wohl noch zur Lehre vom Raume gerechnet werden darf, kommt
die obige Bemerkung zur Anwendung, dass bei einer discreten Mannigfaltigkeit das Princip
der Massverhältnisse schon in dem Begriffe dieser Mannigfaltigkeit enthalten ist, bei einer
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stetigen aber anders woher hinzukommen muss. Es muss also entweder das dem Raume
zu Grunde liegende Wirkliche eine discrete Mannigfaltigkeit bilden, oder der Grund der
Massverhältnisse ausserhalb, in darauf wirkenden bindenen Kräften, gesucht werden.

Die Entscheidung dieser Fragen kann nur gefunden werden, indem man von der bisherigen
durch die Erfahrung bewährten Auffassung der Erscheinungen, wozu Newton den Grund
gelegt, ausgeht und diese durch Thatsachen, die sich aus ihr nicht erklären lassen, getrieben
allmählich umarbeitet; solche Untersuchungen, welche, wie die hier geführte, von allge-
meinen Begriffen ausgehen, können nur dazu dienen, dass diese Arbeit nicht durch die
Beschränktheit der Begriffe gehindert und der Fortschritt im Erkennen des Zusammenhangs
der Dinge nicht durch überlieferte Vorurtheile gehemmt wird.

Es führt dies hinüber in das Gebiet einer andern Wissenschaft, in das Gebiet der Physik,
welches wohl die Natur der heutigen Veranlassung nicht zu betreten erlaubt.

This can be translated as follows:
“But if the independence of bodies from position is not fulfilled, we cannot draw

conclusions from metric relations of the large, to those of the infinitely small; in
that case the curvature at each point may have an arbitrary value in three directions,
provided that the total curvature of every measurable portion of space does not differ
sensibly from zero. Still more complicated relationsmay exist if we no longer assume
that the line element is expressible as the square root of a quadratic differential. Now
it seems that the empirical notions on which the metric determinations of space are
based, the notion of solid body and of ray of light, cease to be valid for the infinitely
small. We are therefore quite free to assume that the metric relations of space in the
infinitely small do not comply with the hypotheses of geometry; and we ought in fact
to do this, if we can thereby obtain a simpler explanation of phenomena.

The question of the validity of the hypotheses of geometry in the infinitely small
is tied up with the question of the origin of the metric relations of space. In this last
question, which we may still regard as belonging to the doctrine of space, is found
the application of the remark made above; that in a discrete manifold, the origin of
its metric relations is given intrinsically, while in a continuous manifold, this origin
must come from outside. Either therefore the reality which underlies space must
form a discrete manifold, or we must seek the origin of its metric relations outside
it, in the binding forces which act upon it.

The answer to these questions can only be obtained by starting from the con-
ception of phenomena which has hitherto been justified by experiments, and which
Newton assumed as a foundation, and by making in this conception the successive
changes required by facts which it cannot explain. Researches starting from general
notions, like the investigation we have just made, can only be useful in preventing
this work from being hampered by too narrow views, and progress in knowledge of
the interdependence of things from being prevented by traditional prejudices.

This leads us into the domain of another science, of physics, into which the object
of this work does not allow us to enter today.”
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Fig. 1 The device uses the light emitted by a LED to produce a random number based on the
quantum randomness of which cells of the camera are reached by emitted photons. This figure is
taken from [20]

2.3 The Quantum and Variability

The originality of the quantum world (in which we actually live) as compared to its
classical approximation, is already manifest at the experimental level by the “imagi-
native randomness” of the results of experiments in the microscopic world. In order
to appreciate this point consider the problem of manufacturing a random number
generator in such a way that even if an attacker happens to know the full details of
the system the chance of reproducing the outcome is zero. This problem was solved
concretely by Bruno Sanguinetti, AnthonyMartin, Hugo Zbinden, and Nicolas Gisin
from the Group of Applied Physics, University of Geneva (see [20]). They invented:
“A generator of random numbers of quantum origin using technology compatible
with consumer and portable electronics and whose simplicity and performance will
make the widespread use of quantum random numbers a reality, with an important
impact on information security (Fig. 1).”

This inherent randomness of the quantum world is not totally arbitrary since
when the observable quantities that one measures happen to commute the usual
classical intuition does apply. We owe to Werner Heisenberg the discovery3 that the
order of terms does matter when one deals with physical quantities which pertain to
microscopic systems. We shall come back later in Sect. 3.3 to the meaning of this
fact but for now we retain that when manipulating the observables quantities for a
microscopic system, the order of terms in a product plays a crucial role.

The commutativity of Cartesian coordinates does not hold in the algebra of coor-
dinates on the phase space of a microscopic system. What Heisenberg discovered
was that quantum observables obey the rules of matrix mechanics and this led von
Neumann to formalize quantum mechanics in terms of operators on Hilbert space.
Let us explain now why this formalism actually provides a mathematical notion of
“real variable” which allows for the coexistence of continuous and discrete variables.
Let us first display the defect of the classical notion. In the classical formulation of
real variables as maps from a set X to the real numbers R, the set X has to be
uncountable if some variable has continuous range. But then for any other variable

3Which he did while he was in the Island of Helgoland trying to recover from hay fever away from
pollen sources (Fig. 2).

http://dx.doi.org/10.1007/978-3-319-64813-2_3
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Fig. 2 Birdseye view,
Helgoland, Germany,
between 1890 and 1900.
Image available from the
United States Library of
Congress’s Prints and
Photographs division, digital
ID ppmsca.00573

with countable range some of the multiplicities are infinite. This means that discrete
and continuous variables cannot coexist in this classical formalism.

Fortunately everything is fine and this problem of treating continuous and discrete
variables on the same footing is completely solved using the formalism of quantum
mechanics which provides another solution and treats directly the notion of real
variable. The key replacement is

“Real Variable → Self Adjoint Operator in Hilbert space”

All the usual attributes of real variables such as their range, the number of times
a real number is reached as a value of the variable etc. have a perfect analogue
in the quantum mechanical setting. The range is the spectrum of the operator, and
the spectral multiplicity gives the number of times a real number is reached. It is
very comforting for instance that one can compose any measurable (Borel) map
h : R → R with any self-adjoint operator H so that h(H ) makes sense and has the
expected property of the composed real variable. In the early times of quantum
mechanics, physicists had a clear intuition of this analogy between operators in
Hilbert space (which they called q-numbers) and variables. Note that the choice of
Hilbert space is irrelevant here since all separable infinite dimensional Hilbert spaces
are isomorphic.

Classical Quantum
Real variable f : X → R Self-adjoint operator in Hilbert space
Possible values of the variable Spectrum of the operator
Algebraic operations on functions Algebra of operators in Hilbert space

In fact it is the uniqueness of the separable infinite dimensional Hilbert space that
cures the above problem of coexistence of discrete and continuous variables: L2[0, 1]
is the same as �2(N), and variables with continuous range (such as the operator of
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multiplication by x ∈ [0, 1]) coexist happily with variables with countable range
(such as the operator of multiplication by 1/n, n ∈ N), but they do not commute!

It is only because one drops commutativity that variables with continuous range
can coexist with variables with countable range. The only new fact is that they do
not commute, and the real subtlety is in their algebraic relations.

What is surprising is that the new set-up immediately provides a natural home
for the “infinitesimal variables”: and here the distinction between “variables” and
numbers (in many ways this is where the point of view of Newton is more efficient
than that of Leibniz) is essential. It is worth quoting Newton’s definition of variables
and of infinitesimals, as opposed to Leibniz:

In a certain problem, a variable is the quantity that takes an infinite number of values which
are quite determined by this problem and are arranged in a definite order

A variable is called infinitesimal if among its particular values one can be found such that
this value itself and all following it are smaller in absolute value than an arbitrary given
number

Indeed it is perfectly possible for an operator to be “smaller than epsilon for
any epsilon” without being zero. This happens when the norm of the restriction of
the operator to subspaces of finite codimension tends to zero when these subspaces
decrease (under the natural filtration by inclusion). The corresponding operators are
called “compact” and they share with naive infinitesimals all the expected algebraic
properties.

Classical Quantum
Infinitesimal variable Compact operator in Hilbert space
Infinitesimal of order α μn(T ) of size n−α when n → ∞
Integral of function

∫
f (x)dx

∫
−T = coefficient of log(�) in Tr�(T)

Indeed they form a two-sided ideal of the algebra of bounded operators in Hilbert
space and the only property of the naive infinitesimal calculus that needs to bedropped
is the commutativity.

The calculus of infinitesimals fits perfectly into the operator formalism of quan-
tum mechanics where compact operators play the role of infinitesimals, with order
governed by the rate of decay of the characteristic values, and where the logarithmic
divergences familiar in physics give the substitute for integration of infinitesimals of
order one, in the form of the Dixmier trace and Wodzicki’s residue. We refer to [14]

for a detailed description of the new integral
∫
−.
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Fig. 3 The pioneer 4 probe,
picture from NASA: 668774
main pioneer plaque

3 The Spectral Paradigm

Before we start the “inward bound” trip [21] to very small distances, it is worth
explaining how the spectral point of view helps also when dealing with issues con-
nected to large astronomical distances.

The simple question “Where are we?” does not have such a simple answer since
giving our coordinates in a specific chart is not an invariant manner of describing our
position. We refer to Fig. 3 for one attempt at an approximate answer.

In fact it is not obvious how to solve two mathematical questions which naturally
arise in this context:

1. Can one specify a geometric space in an invariant manner?
2. Can one specify a point of a geometric space in an invariant manner?

3.1 Why Spectral

Given a compact Riemannian space one obtains a slew of geometric invariants of the
space by considering the spectrum of natural operators such as the Laplacian. The
obtained list of numbers is a bit like a scale associated to the space as made clear by
Mark Kac in his famous paper4 “Can one hear the shape of a drum?”. It is well known
however since a famous one page paper5 of John Milnor that the spectrum of oper-
ators, such as the Laplacian, does not suffice to characterize a compact Riemannian
space. But it turns out that the missing information is encoded by the relative posi-
tion of two abelian algebras of operators in Hilbert space. Due to a theorem of von

4Kac [22].
5Milnor [23].
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Fig. 4 Geodesic

Neumann, the algebra of multiplication by all measurable bounded functions acts in
Hilbert space in a unique manner, independent of the geometry one starts with. Its
relative position with respect to the other abelian algebra given by all functions of
the Laplacian suffices to recover the full geometry, provided one knows the spectrum
of the Laplacian. For some reason which has to do with the inverse problem, it is
better to work with the Dirac operator; and as we shall explain now, this gives a guess
for a new incarnation of the “line element”. The Riemannian paradigm is based on
the Taylor expansion in local coordinates of the square of the line element, and in
order to measure the distance between two points one minimizes the length of a path
joining the two points as in Fig. 4

d(a, b) = Inf
∫

γ

√
gμ ν dxμ dxν (1)

Great efforts were done at the time of the French revolution in order to obtain a
sensible unification of the various units of length that were in use across the country.
It was decided (by Louis XVI, under the advice of Lavoisier) to take, as a unit, the
length L such that 4 × 106 L would be the circumference of the earth. After using as
a preliminary reduction the computation of angles from astronomical observations to
reduce the actual measurement to a smaller portion of meridian, a team was sent out
in 1792 to make the precise measurement of the distance between Dunkerque in the
north of France and Barcelona in Spain; see Fig. 5. This measurement6 resulted in

6I refer the reader to [24] for a very interesting and more detailed account of the story of the
measurement performed by Delambre and Méchain.
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Fig. 5 Delambre and Mechain

an incarnation of L as a concrete platinum bar that was kept in Pavillon de Breuteuil
near Paris. I remember learning in school this definition of the “meter”.

However it turned out that in the 1930s, physicists were able to decide that the
above choice of L was no good. Not only because it would seem totally unpractical
if we would for instance try to transmit its definition to a far distant star, but for
a more pragmatic reason, they observed that the concrete platinum bar defining L
actually had a non-constant length! This observation was done by comparing it with
a specific wave length of Krypton.

Then it took some time until they decided to take the obvious step: to replace L
by the wavelength of a specific atomic transition (the chosen one is called 2S1/2 of
Cesium 133), as was done in 1967 (Fig. 6).
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Fig. 6 Meter → Wave length, the 13th CGPM (1967) uses hyperfine levels of Cesium (C133).
Adaptation of original found at hyperphysics.phy-astr.gsu.edu

More precisely, this hyperfine transition is used to define the second as the duration
of 9,192,631,770 periods of the radiation corresponding to the transition between the
two hyperfine levels of the ground state of the cesium 133 atom.

Moreover the speed of light is set to the value of 299,792,458 m/s, which thus
defines the meter as the length of the path travelled by light in vacuum during a time
interval of 1/299,792,458 of a second, i.e. the meter is

9,192,631,770

299,792,458
= 656,616,555

21,413,747
∼ 30.6633

times the wavelength of the hyperfine transition of Cesium (which is of the order of
3.26 cm).

What is manifest with this new choice of L is that one now has a chance to be able
to communicate our “unit of length” with aliens without telling them to come to Paris
etc. Probably in fact this issue should motivate us to choose a chemical element such
as hydrogen which is far more common in the universe than Cesium. One striking
advantage of the new choice of L is that it is no longer “localized” (as it was before
near Paris) and is available anywhere using the constancy of the spectral properties
of atoms. It will serve us as a motivation for our spectral paradigm.

3.2 The Line Element

The presence of the square root in (1) is the witness of Riemann’s prescription for
the square of the line element as ds2 = gμ ν dxμ dxν . In the spectral framework the
extraction of the square root of the Laplacian goes back to Hamilton who already
wrote, using his quaternions, the key combination

D = i∂x + j∂y + k∂z
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Fig. 7 Hamilton [25], Clifford, Dirac

The conceptual algebraic device for extracting the square root of sums of squares
such as X 2 + Y 2 is provided by the Clifford algebra where the anti-commutation
XY = −YX provides the simplification (X + Y )2 = X 2 + Y 2 (Fig. 7).

P. Dirac showed how to extract the square root of the Laplacian in order to obtain
a relativistic form of the Schrödinger equation. For curved spaces Atiyah and Singer
devised a general formula for the Dirac operator on a spin Riemannian manifold and
this provides us with our prescription: the line element is the propagator

ds = D−1

(where one takes the value 0 on the kernel). This allows us to measure distances and
(1) becomes

d(a, b) = Sup |f (a) − f (b)|, f such that ‖[D, f ]‖ ≤ 1. (2)

which gives the same answer as (1) and is a “Kantorovich dual” of the usual formula.
But we now have the possibility to define and measure distances without the need of
paths joining two points as in (1). And indeed one finds plenty of examples of totally
disconnected spaces in which the new formula (2) makes sense and gives sensible
results while (1) would not, due to the absence of connected arcs.

The link of this new definition of distances (and hence of geometry) with the quan-
tum world appears in many ways: first the “line element” ought to be an “infinites-
imal”. This indeed fits since in a compact Riemannian spin manifold the above
operator ds is compact i.e. infinitesimal as explained in Sect. 2.3. But there are
two more facts which help us to appreciate the relevance of the new concept: both
are displayed in Fig. 8. In the upper part the directed line is a common ingredi-
ent of Feynman diagrams, it represents the internal legs of fermionic diagrams and
is called the “fermion propagator”. Physically it represents a very tiny interval in
which the interaction takes place. Mathematically it is our “ds” (modulo a bit of
agility in understanding the physics language and in particular the need to pass from
the Minkowski signature to the Euclidean one). The lower part of Fig. 8 displays

http://dx.doi.org/10.1007/978-3-319-64813-2_2


174 A. Connes

Fig. 8 Line element

an even more important feature: the above fermionic propagator undergoes quan-
tum corrections due to its role in quantum field theory and we can interpret these
corrections as quantum corrections to the geometry!

3.3 The Bonus from Non-commutativity

In algebra the commutativity assumption often appears as a welcome simplification
which makes many algebraic manipulations much easier. But in fact we should
realize that our use of the written language makes us perfectly familiar with non-
commutativity. The advantage, as far as meaning is concerned, of paying attention
to the order of terms, becomes clear when considering anagrams i.e. writings which
become equal when “abelianized” but nevertheless have quite different meanings
when the order of terms is respected. Here is a recent anagram which can be found in
“Anagrammes pour lire dans les pensées” by Raphael Enthoven and Jacques Perry-
Salkow,

“ondes gravitationnelles”

“le vent d’orages lointains”

When we permit ourselves to commute the various letters involved in each of these
phrases we find the same result:

a2de3gi2l2n3o2rs2t2v

This shows that in projecting a phrase in the commutative world one looses an
enormous amount of information encoded by non-commutativity. Natural languages
respect non-commutativity and a phrase is a much more informative datum than its
commutative algebraic shadow.

Here are two more key features of the noncommutative world:

1. Non-commuting discrete variables of the simplest kind generate continuous vari-
ables.

2. A noncommutative algebra possesses inner automorphisms.
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We always think of variables through their representations as operators in Hilbert
space as explained in Sect. 2.3 and since the product of two self-adjoint opera-
tors is not self-adjoint unless they commute, one deals with algebras A which are
∗-algebras i.e. which are endowed with an antilinear involution which obeys the rule
(xy)∗ = y∗x∗ for any x, y ∈ A. The simplest noncommutative algebra of this kind is
M2(C) the algebra of 2 × 2 matrices

a =
(
a11 a12
a21 a22

)

, b =
(
b11 b12
b21 b22

)

, ab =
(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)

and the antilinear involution is given using the complex conjugation z 	→ z̄ by the
conjugate transpose, i.e.

a∗ =
(
ā11 ā21
ā12 ā22

)

This algebraM2(C) only represents discrete variables taking at most two values but
as soon as one adjoins another non-commuting variable Y , such that Y = Y ∗ and
Y 2 = 1 one generates all matrix valued functions on the two-sphere.

To be more precise, write the above generic matrix in the form a = a11e11 +
a12e12 + a21e21 + a22e22 where the eij ∈ M2(C), and the coefficients aij ∈ C are
complex numbers. Then using algebra one can write Y = y11e11 + y12e12 + y21e21 +
y22e22 where the yij are no longer complex numbers but commute with M2(C). For
instance y11 = e11Ye11 + e21Ye12. One imposes the additional condition that the trace
of Y is zero, i.e. that y11 + y22 = 0. It is then an exercise using the relations Y = Y ∗
and Y 2 = 1, to show that the C∗-algebra generated by the yij is the algebra C(S2) of
continuous functions on the two sphere S2. It contains of course plenty of “continuous
variables” and the traditional sup norm of complex valued functions is

Supx∈S2 |f (x)| = Supπ‖π(f )‖

where in the right hand side π runs through all Hilbert space representations (compat-
iblewith the involution ∗) of the above relations. One obtains all continuous functions
by completion and thus one keeps inside the algebra C(S2) the nicer smooth func-
tions such as those algebraically obtained from the yij. The sphere itself is recovered
as the Spectrum of the algebra, and the points of the sphere are the characters i.e.
the morphisms of involutive algebras to C.

This is a prototype example of how a connected space (here the two sphere S2)
can spring out of the discrete (hereM2(C) and the two valued variable Y ) due to non-
commutativity. Note also the compatibility of the two notions of spectrum. Indeed for
f in the commutative algebra generated by the yij, the spectrum of the operator π(f )
is the image by the corresponding function on S2 of the support of the representation
π which is a closed subset of the spectrum of the algebra. To put this in a suggestive
manner: what happens is that the geometric space S2 appeared in a spectral manner
and from familiar players of the quantum world: the algebra M2(C), for instance, is
familiar from spin systems.

http://dx.doi.org/10.1007/978-3-319-64813-2_2
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There is another great bonus from non-commutativity: the natural algebra which
springs out of the non-commuting M2(C) and Y discussed above is not the algebra
generated by the yij but the algebra generated by M2(C) and Y . It contains the
former but is larger and gives the algebra C(S2,M2(C)) of matrix valued continuous
functions on the two sphere. If we take the subalgebra of smooth functions A =
C∞(S2,M2(C)) (which is canonically obtained inside C(S2,M2(C)) by applying
the smooth functional calculus to the generators) and one looks at its automorphism
group,7 one finds that it fits in an exact sequence

1 → Int(A) → Aut(A) → Out(A) → 1.

Such an exact sequence exists for any non-commutative ∗-algebra, the inner auto-
morphisms Int(A) are those of the form x 	→ uxu∗ where u ∈ A is a unitary element
i.e. fulfills uu∗ = u∗u = 1. The nice general fact is that these automorphisms always
form a normal subgroup of the groupAut(A) and the quotient groupOut(A) is called
the group of outer automorphisms ofA. Nowwhen one computes these groups in our
example i.e. for A = C∞(S2,M2(C)), one finds that the group Out(A) is the group
of diffeomorphisms Diff(S2) while Int(A) is the group of smooth maps from S2 to
the Lie group PSU (2) whose Lie algebra is su(2). Thus we witness in this example
the marriage of the gauge group of gravity i.e. the diffeomorphism group, with the
gauge group of matter i.e. here of an su(2)-gauge theory.

3.4 The Notion of Manifold

The notion of spectral geometry has deep roots in pure mathematics. They have to
do with the understanding of the notion of (smooth) manifold. While this notion
is simple to define in terms of local charts i.e. by glueing together open pieces of
finite dimensional vector spaces, it is much more difficult and instructive to arrive
at a global understanding. To be specific we now discuss the notion of a compact
oriented smooth manifold.

What one does is to detect global properties of the underlying space with the
goal of characterizing manifolds. At first one only looks at the space up to homo-
topy. The broader category of “manifolds” that one first obtains is that of “Poincaré
complexes” i.e. of CW complexes X which satisfy Poincaré duality with respect to
the fundamental homology class with coefficients in Z. It is important to take into
account the fundamental group π1(X ), and to assume Poincaré duality with arbitrary
local coefficients. In the simply connected case, a result of Spivak [26] shows the
existence (and uniqueness up to stable fiber homotopy equivalence) of a spherical
fibration, called the Spivak normal bundle p : E → X . Such a fibration satisfies the
covering homotopy property and each fiber p−1(x) has the homotopy type of a sphere.
At this point one is still very far from dealing with a manifold and the obstruction

7Compatible with the ∗-operation.
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to obtain a smooth manifold in the given homotopy type is roughly the same as that
of finding a vector bundle whose associated spherical fibration is p : E → X . This
follows from the work of Novikov and Browder at the beginning of the 1960s. There
are important nuances between piecewise linear (PL) and smooth but they do not
affect the 4-dimensional case in which we are interested.

The first key root of the notion of “spectral geometry” is a result of D. Sullivan
(see [27], epilogue) that a PL-bundle is the same thing (modulo the usual “small-
print” qualifications at the prime 2, [28]) as a spherical fibration together with a KO-
orientation. What we retain is that the key property of a “manifold” is not Poincaré
duality in ordinary homology but is Poincaré duality in the finer theory called KO-
homology. To understand how much finer that theory is, it is enough to state that the
fundamental class [X ] ∈ KO∗(X ) contains all the information about the Pontrjagin
classes of the manifold and these are not at all determined by its homotopy type: in
the simply connected case only the signature class is fixed by the homotopy type.

Here comes now the second crucial root of the notion of spectral geometry from
pure mathematics. In their work on the index theorem, Atiyah and Singer understood
that operators in Hilbert space provide the right realization for KO-homology cycles
[3, 29]. Their original idea was developed by Brown-Douglas-Fillmore, Voiculescu,
Mischenko and acquired its definitive form in the work of Kasparov at the end of the
1970s. The great new tool is bivariant Kasparov theory, but as far as K-homology
cycles are concerned8 the right notion is already inAtiyah’s paper [3]: AK-homology
cycle on a compact space X is given by a representation of the algebra C(X ) (of
continuous functions on X ) in a Hilbert spaceH, together with a Fredholm operator
F acting in the same Hilbert space fulfilling some simple compatibility condition
(of commutation modulo compact operators) with the action of C(X ). One striking
feature of this representation of K-homology cycles is that the definition does not
make any use of the commutativity of the algebra C(X ).

At the beginning of the 1980s, motivated by numerous examples of noncom-
mutative spaces arising naturally in geometry from foliations or in physics from
the Brillouin zone in the work of Bellissard on the quantum Hall effect, I realized
that specifying an unbounded representative of the Fredholm operator gave the right
framework for spectral geometry. The correspondingK-homology cycle only retains
the stable information and is insensitive to deformations while the unbounded repre-
sentative encodes the metric aspect. These are the deep mathematical reasons which
are the roots of the notion of spectral triple.

3.5 Real Structure

The additional structure on aK-homology cycle that upgrades it into aKO-homology
cycle is given by requiring a real structure [30], i.e. an antilinear unitary operator J

8The nuance between K and KO is important and gives rise to the real structure discussed in the
next section.
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acting in H which plays the same role and has the same algebraic properties as the
charge conjugation operator in physics.

• In physics J is the charge conjugation operator.
• It is deeply related to Tomita’s (Fig. 9) operator which conjugates the algebra with
its commutant. The basic relation always satisfied is Tomita’s relation:

[a, bop] = 0 , ∀a, b ∈ A, bop := Jb∗J−1.

• In KO-homology, one obtains a KO-homology cycle for the algebra A ⊗ Aop and
an intersection form:

K(A) ⊗ K(A) → Z, Index(De⊗f )

In the even case, the chirality operator γ plays an important role, both γ and J are
decorations of the spectral triple.

The following further relations hold for D, J and γ

J 2 = ε , DJ = ε′JD, J γ = ε′′γJ , Dγ = −γD

Fig. 9 Minoru Tomita
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The values of the three signs ε, ε′, ε′′ depend only, in the classical case of spin
manifolds, upon the value of the dimension nmodulo 8 and are given in the following
table:

n 0 1 2 3 4 5 6 7
ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 −1 1 −1

In the classical case of spin manifolds there is a relation between the metric (or
spectral) dimension given by the rate of growth of the spectrum of D and the integer
modulo 8 which appears in the above table. For more general spaces, however, the
two notions of dimension (the dimension modulo 8 is called the “KO-dimension”
because of its origin in K-theory) become independent, since there are spaces F of
metric dimension 0 but of arbitrary KO-dimension.

The search to identify the structure of the noncommutative space followed the
bottom-up approach where the known spectrum of the fermionic particles was used
to determine the geometric data that defines the space.

This bottom-up approach involved an interesting interplay with experiments.
While at first the experimental evidence of neutrino oscillations contradicted the
first attempt, it was realized several years later9 in 2006 (see [7]), that the obstruction
to getting neutrino oscillations was naturally eliminated by dropping the equality
between the metric dimension of space-time (which is equal to 4 as far as we know)
and its KO-dimension which is only defined modulo 8. When the latter is set equal to
2 modulo 8 (using the freedom to adjust the geometry of the finite space encoding the
fine structure of space-time) everything works fine: the neutrino oscillations are there
as well as the see-saw mechanism which appears for free as an unexpected bonus.
Incidentally, this also solved the fermion doubling problem by allowing a simulta-
neous Weyl-Majorana condition on the fermions to halve the degrees of freedom.

3.6 The Inner Fluctuations of the Metric

In our joint work with Chamseddine and van Suijlekom [31], we obtained a concep-
tual understanding of the role of the gauge bosons in physics as the inner fluctuations
of the metric. I will describe this result here in a non-technical manner.

In order to comply with Riemann’s requirement that the inverse line element D
embodies the forces of nature, it is evidently important that we do not separate artifi-
cially the gravitational part from the gauge part, and that D encapsulates both forces
in a unifiedmanner. In the traditional geometrization of physics, the gravitational part
specifies the metric while the gauge part corresponds to a connection on a principal

9This crucial step was taken independently by John Barrett.
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bundle. In the NCG framework, D encapsulates both forces in a unified manner and
the gauge bosons appear as inner fluctuations of the metric but form an inseparable
part of the latter. Ignoring at first the important nuance coming from the real structure
J , the inner fluctuations of the metric were first defined as the transformation

D 	→ D + A, A =
∑

aj[D, bj], aj, bj ∈ A, A = A∗

which imitates the way classical gauge bosons appear as matrix-valued one-forms
in the usual framework. The really important facts were that the spectral action
applied to D + A delivers the Einstein-Yang-Mills action which combines gravity
with matter in a natural manner, and that the gauge invariance becomes transparent
at this level since an inner fluctuation coming from a gauge potential of the form
A = u[D, u∗] where u is a unitary element (i.e. uu∗ = u∗u = 1) simply results in a
unitary conjugation D 	→ uDu∗ which does not change the spectral action.

An equally important fact which emerged very early on, is that as soon as one
considers the product of an ordinary geometric space by a finite space of the simplest
nature, such as two points, the inner fluctuations generate the Higgs field and the
spectral action gives the desired quartic potential underlying theBrout-Englert-Higgs
mechanism. The inverse line elementDF for the finite spaceF is given by theYukawa
coupling matrix which thus acquires geometric meaning as encoding the geometry
of F .

What we discovered in our joint work with Chamseddine and van Suijlekom [31]
is that the inner fluctuations arise in fact from the action on metrics (i.e. the D) of a
canonical semigroup Pert(A) which only depends upon the algebra A and extends
the unitary group. The semigroup is defined as the self-conjugate elements:

Pert(A) := {A =
∑

aj ⊗ bopj ∈ A ⊗ Aop |
∑

ajbj = 1, θ(A) = A}

where θ is the antilinear automorphism of the algebra A ⊗ Aop given by

θ :
∑

aj ⊗ bopj 	→
∑

b∗
j ⊗ a∗op

j .

The composition law in Pert(A) is the product in the algebra A ⊗ Aop. The action
of this semigroup Pert(A) on the metrics is given, for A = ∑

aj ⊗ bopj by

D 	→ D′ =AD =
∑

ajDbj.

Moreover, the transitivity of inner fluctuations results from

A′
(AD) =(A′A)D.

What is remarkable is that it allows one to obtain the inner fluctuations in the real case
(see Sect. 3.5), i.e. in the presence of the anti-unitary involution J , without having
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to make the “order one” hypothesis. To do this one uses instead of the algebra A
the finer one given by B = A ⊗ Â where the conjugate algebra Â acts in Hilbert
space using JaJ−1 for a ∈ A. The commutation of the actions of A and of Â in
Hilbert space ensure thatB acts.One then simplydefines a semigrouphomomorphism
μ : Pert(A) → Pert(B) by

A ∈ A ⊗ Aop 	→ μ(A) = A ⊗ Â ∈
(
A ⊗ Â

)
⊗

(
A ⊗ Â

)op
.

This gives the inner fluctuations in the real case and they take the form

D 	→ D′ := D + A(1) + Ã(1) + A(2)

where, with A = ∑
aj ⊗ bopj as above

A(1) =
∑

i

ai [D, bi]

Ã(1) =
∑

i

âi
[
D, b̂i

]
, âi = JaiJ

−1, b̂i = JbiJ
−1

A(2) =
∑

i,j

âiaj
[[
D, bj

]
, b̂i

]
=

∑

i,j

âi
[
A(1), b̂i

]
.

The new quadratic term A(2) vanishes when the order 1 condition is fulfilled but not
in general. This conceptual understanding of the inner fluctuations allowed us, with
Chamseddine and van Suijlekom [12, 13, 31] to determine the inner fluctuations
for the natural extension of the Standard Model obtained from the classification of
irreducible finite geometries of KO-dimension 6 of [6, 32]. This gives a Pati-Salam
extension of the Standard model and we showed in [12, 13] that it yields a natural
unification of couplings.

4 Quanta of Geometry

The above extension of the Standard Model obtained from the classification of irre-
ducible finite geometries of KO-dimension 6 is based on the finite dimensional alge-
braM2(H) ⊕ M4(C). While this algebra occurred as one of the simplest in the classi-
fication of [6, 32], its choice remained motivated by the bottom-up approach that we
had followed all along up to that point. For instance there was no conceptual expla-
nation for the difference of the real dimensions: 16 for M2(H) and 32 forM4(C).

This state of the theory changed drastically in our joint work with Chamseddine
andMukhanov [10, 11] where the above finite dimensional algebraM2(H) ⊕ M4(C)

appeared unexpectedly from a completely different motivation. The framework is the
same, “spectral geometries” and the question is how to encode all spin Riemannian
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4-manifolds in an operator theoretic manner. The key new idea is that since spectral
triples only quantize the fundamental KO-homology class one should look at the
same time for the quantization of the dual KO-theory class.

A hint of this idea can be understood easily in the one dimensional case, i.e. for
the geometry of the circle. It is an exercise to prove that for unitary representations
of the relations

UU ∗ = U ∗U = 1, D = D∗, U ∗[D,U ] = 1 (3)

with D unbounded self-adjoint playing as above the role of the inverse line element,
one has10

1. ds infinitesimal ⇒
∫
−|ds| ∈ N.

2. The formula d(a, b) = Sup {|f (a) − f (b)| | ‖[D, f ]‖ ≤ 1} gives the standard
distance on the spectrum of U which is the unit circle in C.

3. LetM be a dimension 1 compactRiemannianmanifold, (A,H,D) the associated
spectral triple. Then a solution U ∈ A of the equation U ∗[D,U ] = 1 exists if
and only if the length |M | ∈ 2πN.

One may understand the relations (3) as representations of a group which is a close
relative of the Heisenberg group and this would lead one to group representations:
but this theme would stay far away from our goal which is 4-dimensional geometries
– and which was achieved in [10, 11]. What we have discovered is a higher geomet-
ric analogue of the Heisenberg commutation relations [p, q] = i�. The role of the
momentum p is played by the Dirac operator, as amply discussed above. The role of
the position variable q in the higher analogue of [p, q] = i� was the most difficult
to uncover, and another hint was given in Sect. 3.3 where the 2-sphere appeared
from very simple non-commuting discrete variables. The general idea of [10, 11]
is to encode the analogue of the position variable q in the same way as the Dirac
operator encodes the components of the momenta, just using the Feynman slash. As
explained below there are two levels. In the first, which is discussed in Sect. 4.1,
the quantization is done for the K-theory class, and this justifies the terminology of
K-theory higher Heisenberg equation. However, geometrically, the only solutions
are disjoint unions of spheres of unit volume. To reach arbitrary compact oriented
spin 4-manifolds, one needs the KO-theory refinement. This is treated in Sect. 4.2.

4.1 The K-Theory Higher Heisenberg Equation; Spheres

Let us first rewrite the description of the algebra of Sect. 3.3, which was presented as

M2(C) � Y , Y = Y ∗, Y 2 = 1, < Y >= 0.

10We refer to [14] for the meaning of the integral symbol.

http://dx.doi.org/10.1007/978-3-319-64813-2_3
http://dx.doi.org/10.1007/978-3-319-64813-2_4
http://dx.doi.org/10.1007/978-3-319-64813-2_4
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As explained in Sect. 3.3 one can represent its elements as matrices with entries in
the commutant of M2(C)

Y =
(
y11 y12
y21 y22

)

, Y =
(

t z
z∗ −t

)

where the second form is deduced from the relations. We can rewrite the result in
terms of 3 gamma matrices �A, 0 ≤ A ≤ 2,

�0 =
(
1 0
0 −1

)

, �1 =
(
0 1
1 0

)

, �2 =
(

0 i
−i 0

)

.

which fulfill:
{�A, �B} = 2 δAB, (�A)

∗ = �A

and Y now takes the simple form:

Y = YA�A, Y 2 = 1, Y ∗ = Y .

4.1.1 One-Sided Higher Heisenberg Equation

This suggests the following extension for arbitrary even n. We let Y ∈ A ⊗ C+ be
of the Feynman slashed form:

Y = YA�A, YA ∈ A, Y 2 = 1, Y ∗ = Y . (4)

Here C+ ⊂ Ms(C), s = 2n/2, is an irreducible representation of the Clifford algebra
on n + 1 gamma matrices �A, 0 ≤ A ≤ n

�A ∈ C+, {�A, �B} = 2 δAB, (�A)
∗ = �A.

The one-sided higher analogue of the Heisenberg commutation relations is

1

n!
〈
Y [D,Y ]n

〉 = γ (5)

where the notation 〈T 〉 means the normalized trace of T = Tij with respect to the
above matrix algebra Ms(C) (1/s times the sum of the s diagonal terms Tii).

4.1.2 Quantization of Volume

For even n, Eq. (5), together with the hypothesis that the eigenvalues of D grow as
in dimension n (i.e. that ds is an infinitesimal of order 1/n) imply that the volume,
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expressed as the leading term in the Weyl asymptotic formula for counting eigenval-
ues of the operatorD, is quantized by being equal to the index pairing of the operator
D with the K-theory class of A defined by (note that s is even)

[e − 1/2] := [e] − s/2[1A] ∈ K0(A), e = (1 + Y )/2.

To understand this result, we need to recall that the integral pairing between
K-homology and K-theory is computed by the pairing of the Chern characters in
cyclic theory according to the diagram:

K − Theory

Ch∗

K − Homology

Ch∗

HC∗ HC∗

While the Chern character from K-homology to cyclic cohomology is difficult, its
counterpart from K-theory to cyclic homology can be explained succinctly as fol-
lows. Given a unital (not assumed commutative) algebra A, the (b,B)-bicomplex is
obtained from the (b,B) bicomplex:

A := A/C1, Cn(A) := A ⊗ A ⊗ · · · ⊗ A

b(a0 ⊗ · · · ⊗ an) := a0a1 ⊗ · · · ⊗ an − a0 ⊗ a1a2 ⊗ · · · ⊗ an + · · · +

(−1)n−1a0 ⊗ · · · ⊗ an−1an + (−1)nana0 ⊗ · · · ⊗ an−1

B(a0 ⊗ · · · ⊗ an) :=
n∑

0

(−1)nj1 ⊗ aj ⊗ aj+1 ⊗ · · · ⊗ aj−1.

The operations (b,B) fulfill

b2 = 0, B2 = 0, bB = −Bb

and an even (resp. odd) cycle c = (cn) is given by its components cn ∈ Cn(A) for n
even (resp. odd) which fulfill

Bcn + bcn+2 = 0 , ∀n even (resp. odd). (6)

The Chern character of an idempotent e ∈ A, e2 = e, is then given by the cycle
with components Ch0(e) = e ∈ A = C0(A) and for k > 0
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Ch2k(e) = λk × (e − 1

2
) ⊗ e ⊗ e ⊗ · · · ⊗ e ∈ C2k(A).

One has

b(e − 1

2
) ⊗ e ⊗ e ⊗ · · · ⊗ e = 1

2
(1 ⊗ e ⊗ e ⊗ · · · ⊗ e)

B(e − 1

2
) ⊗ e ⊗ e ⊗ · · · ⊗ e = B(e ⊗ e ⊗ e ⊗ · · · ⊗ e)

= (2k + 1) (1 ⊗ e ⊗ e ⊗ · · · ⊗ e) .

Thus one can choose the λk so that (2k + 1)λk + 1
2λk+1 = 0

BCh2k(e) + bCh2k+2(e) = 0

and one gets a cycle Ch∗(e) in the (b,B)-bicomplex which gives the Chen character
in K-theory.

In general the idempotent e does not belong to A but to matrices Ms(A) and the
next step is to pass to matrices. To do this one considers partial trace maps

tr : Cn(Ms(A)) → Cn(A).

One defines

tr : Ms(A) ⊗ Ms(A) ⊗ · · · ⊗ Ms(A) → A ⊗ A ⊗ · · · ⊗ A

as the linear map such that:

tr ((a0 ⊗ μ0) ⊗ (a1 ⊗ μ1) ⊗ · · · ⊗ (am ⊗ μm)) = Trace(μ0 · · · μm) a0 ⊗ a1 ⊗ · · · ⊗ am

where Trace is the ordinary trace of matrices. Let us denote by ιk the operation which
inserts a 1 in a tensor at the k-th place. So for instance

ι0(a0 ⊗ a1 ⊗ · · · ⊗ am) = 1 ⊗ a0 ⊗ a1 ⊗ · · · ⊗ am

One has tr ◦ ιk = ιk ◦ tr since (taking k = 0 for instance)

tr ◦ ι0 ((a0 ⊗ μ0) ⊗ (a1 ⊗ μ1) ⊗ · · · ⊗ (am ⊗ μm)) =

= tr ((1 ⊗ 1) ⊗ (a0 ⊗ μ0) ⊗ (a1 ⊗ μ1) ⊗ · · · ⊗ (am ⊗ μm))

= Trace(1μ0 · · · μm)1 ⊗ a0 ⊗ a1 ⊗ · · · ⊗ am =

= ι0 (tr ((a0 ⊗ μ0) ⊗ (a1 ⊗ μ1) ⊗ · · · ⊗ (am ⊗ μm))) .
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Thus the map tr induces a map tr : Cn(Ms(A)) → Cn(A) and one checks that this
map is compatible with the operations (b,B). For an idempotent e ∈ Ms(A) the
components of its Chern character in C∗(A) are given by tr(Ch2k(e)). Thus they are

Ch2k(e) = λk × tr

(

(e − 1

2
) ⊗ e ⊗ e ⊗ · · · ⊗ e

)

, k > 0.

Moreover this formula still holds for k = 0 when replacing e by [e − 1/2]:

Ch2k([e − 1/2]) = λk × tr

(

(e − 1

2
) ⊗ e ⊗ e ⊗ · · · ⊗ e

)

, ∀k ≥ 0.

Using Y = 2e − 1 and the construction of theCm(A) one thus gets, form = 2k even,

Chm([e − 1/2]) = 2−(m+1)λk tr (Y ⊗ Y ⊗ Y ⊗ · · · ⊗ Y ) ∈ Cm(A). (7)

The fundamental fact which is behind the quantization of the volume is, for Y ful-
filling (4), the vanishing of all the lower components

Chm([e − 1/2]) = 0, ∀m < n. (8)

This follows because for a product P of an odd number 2k + 1 < n + 1 of �A, the
trace of P vanishes since one can still find a � = �X which anti-commutes with the
�A’s involved in P and thus

P = �2P = −�P� ⇒ Trace(P) = 0.

It follows from (8) that the component Chn([e − 1/2]) is a Hochschild cycle and that
for any cyclic n-cocycle φn the pairing < φn, e > is the same as < I(φn),Chn(e) >

where I(φn) is the Hochschild class of φn. This applies to the cyclic n-cocycle φn

which is the Chern character φn in K-homology of the spectral triple (A,H,D) with
grading γ where A is the algebra generated by the components YA of Y . One then
uses the following formula for the Hochschild class τ of the Chern character φn in
K-homology of the spectral triple (A,H,D), up to normalization11:

τ (a0, a1, . . . , an) =
∫
−γa0[D, a1] · · · [D, an]D−n, ∀aj ∈ A.

This follows from the local index formula of Connes-Moscovici [33]. But in fact,
one does not need the technical hypothesis since, when the lower components of the
operator theoretic Chern character all vanish, one can use the non-local index formula
in cyclic cohomology and the determination in the book [14] of the Hochschild class
of the index cyclic cocycle. We refer to [34] for an optimal formulation of the result.

11We refer to [14] for the meaning of the integral symbol.
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Moreover since D commutes with the algebra Ms(C) one has

τ ◦ tr(y0, y1, . . . , yn) = s
∫
−γ 〈y0[D, y1] · · · [D, yn]〉D−n, ∀yj ∈ Ms(A)

so that with Y = 2e − 1, one gets

< τ ,Chn([e − 1/2]) >= s
∫
−γ

〈
Y [D,Y ]n

〉
D−n

and, up to normalization, Eq. (5) thus implies

∫
−D−n =

∫
−γ2D−n = 1

n!
∫
−γ

〈
Y [D, Y ]n

〉
D−n = 1

n!s < τ ,Chn([e − 1/2]) >∈ 1

n!s Z :

which is the quantization of the volume.

4.1.3 Disjoint Quanta

We recall that given a smooth compact oriented spin manifold M , the associated
spectral triple (A,H,D) is given by the action in the Hilbert space H = L2(M , S)

of L2-spinors of the algebra A = C∞(M ) of smooth functions on M , and the Dirac
operator D which in local coordinates is of the form

D = γμ

(
∂

∂xμ
+ ωμ

)

where γμ = eμ
aγa and ωμ is the spin-connection.

Theorem 4.1 Let M be a spin Riemannian manifold of even dimension n and
(A,H,D) the associated spectral triple. Then a solution of the one-sided equation
(5) exists if and only if M decomposes as the disjoint sum of spheres of unit volume.
On each of these irreducible components the unit volume condition is the only con-
straint on the Riemannian metric which is otherwise arbitrary for each component
(Fig. 10).

Equation (4) shows that a solution Y gives a map Y : M → Sn from the manifold
M to the n-sphere. Let us compute the left hand side of (5). The normalized trace of
the product of n + 1 Gamma matrices is the totally antisymmetric tensor

〈�A�B · · ·�L〉 = in/2εAB...L, A,B, . . . ,L ∈ {1, . . . , n + 1}.

One has

[D,Y ] = γμ ∂YA

∂xμ
�A = ∇YA�A
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Fig. 10 Collection of tiny
spheres

where we let ∇f be the Clifford multiplication by the gradient of f . Thus one gets at
any x ∈ M the equality

〈Y [D,Y ] · · · [D,Y ]〉 = in/2εAB...LY
A∇YB · · · ∇YL.

Given n operators Tj ∈ C in an algebra C the multiple commutator

[T1, . . . ,Tn] :=
∑

ε(σ)Tσ(1) · · · Tσ(n)

(where σ runs through all permutations of {1, . . . , n}) is amultilinear totally antisym-
metric function of the Tj ∈ C. In particular, if the Ti = ajiSj are linear combinations
of n elements Sj ∈ C one gets

[T1, . . . ,Tn] = Det(aji)[S1, . . . , Sn]. (9)

For fixed A, and x ∈ M the sum over the other indices

εAB...LY
A∇YB · · · ∇YL = (−1)AY A[∇Y 1,∇Y 2, . . . ,∇Y n+1]

where all other indices are �= A. At x ∈ M one has ∇Y j = γμ∂μY j and by (9) the
multi-commutator (with ∇YA missing) gives
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[∇Y 1,∇Y 2, . . . ,∇Y n+1] = εμν...λ∂μY
1 · · · ∂λY

n+1[γ1, . . . , γn].

Since γμ = eμ
aγa and in/2[γ1, . . . , γn] = n!γ one thus gets

〈Y [D,Y ] · · · [D,Y ]〉 = n!γDet(eα
a )ω

where
ω = εAB...LY

A∂1Y
B · · · ∂nY

L

so thatωdx1 ∧ · · · ∧ dxn is the pullbackY #(ρ) by themapY : M → Sn of the rotation
invariant volume form ρ on the unit sphere Sn given by

ρ = 1

n!εAB...LY
AdYB ∧ · · · ∧ dY L.

Thus, using the inverse vierbein, the one-sided equation (5) is equivalent to

det
(
eaμ

)
dx1 ∧ · · · ∧ dxn = Y #(ρ).

This equation implies that the Jacobian of the map Y : M → Sn cannot vanish any-
where, and hence that the map Y is a covering.

It would seem at this point that only disconnected geometries fit in this framework.
But this would be to ignore an essential piece of structure of the NCG framework,
which allows one to refine (5). Namely: the real structure J , an antilinear isometry
in the Hilbert space H which is the algebraic counterpart of charge conjugation.

4.2 The KO-Theory Higher Heisenberg Equation

We now take into account the real structure J and this gives the refinement from K
to KO. One replaces (4) by (with summation on indices A and κ ∈ {±1})

Y = YA
κ �A,κ, Y 4 = 1, Y ∗Y = 1, (10)

TheHilbert space splits according to the spectrumofY 2 as a direct sumH = H(+) ⊕
H(−)

Y = Y+ ⊕ Y−, Y 2
± = ±1, Y ∗

± = ±Y±, Y± = YA
±�A,±.

For κ ∈ {±1} the �A,κ fulfill inH(κ) the Clifford relations

{
�A,κ, �B,κ

} = 2κ δAB, (�A,κ)
∗ = κ�A,κ.

The compatibility with J is given by the relations:

JY 2 = −Y 2J , [Y , JYJ−1] = 0
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Let C± = C(�A,±) be the algebra generated over R by the �A,κ. In H(+), C+ com-
mutes with C ′− = JC−J−1 to take into account the relation [Y , JYJ−1] = 0. We thus
view Y as a smooth section:

Y = Y+ ⊕ Y− ∈ C∞(M ,C+ ⊕ C−)

This leads us to refine the quantization condition by taking J into account as the
two-sided equation

1

n!
〈
Z [D,Z]n

〉 = γ, Z = 2EJEJ−1 − 1, [D,Y 2] = 0, (11)

where E is the spectral projection E+ ⊕ E− of the unitary Y = Y+ ⊕ Y− ∈ C∞
(M ,C+ ⊕ C−).

E = E+ ⊕ E− = 1

2
(1 + Y+) ⊕ 1

2
(1 + iY−)

It turns out that in dimension n = 4, the irreducible pieces give :

C+ = M2(H), C− = M4(C)

which give the algebraic constituents of the Standard Model exactly in the form of
our previous work. This can be seen using the following table:

p − q mod 8 Cliffp,q(R) n = p + q p − q mod 8 Cliffp,q(R) n = p + q
0 M (2n/2, R) 1 Mu(R) ⊕ Mu(R) u = 2(n−1)/2

2 M (2n/2, R) 3 M (2(n−1)/2, C)

4 M (2(n−2)/2, H) 5 Mv(H) ⊕ Mv(H) v = 2(n−3)/2

6 M (2(n−2)/2, H) 7 M (2(n−1)/2, C)

Indeed in dimension n = 4 one needs n + 1 = 5 gamma matrices, and the irre-
ducible pieces of the Clifford algebras Cliffp,q(R) areM2(H) for (p, q) = (5, 0) and
M4(C) for (p, q) = (0, 5). Moreover in the 4-dimensional case one has, in the Hilbert
space H(+), by the detailed calculation of [11],

〈
Z [D,Z]4

〉
+ = 1

2

〈
Y+

[
D,Y+

]4〉 + 1

2

〈
Y ′

−
[
D,Y ′

−
]4〉

,

where Y ′− = iJY−J−1. One now gets two maps Y± : M → Sn while (11) becomes,
up to normalization

det
(
eaμ

)
dx1 ∧ · · · ∧ dxn = Y #

+(ρ) + Y #
−(ρ), (12)

where Y #±(ρ) is the pull back of the volume form ρ of the sphere.
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For an n-dimensional smooth compact manifold we let D(M ) be the set of pairs
of smooth maps φ± : M → Sn such that the differential form

φ#
+(ρ) + φ#

−(ρ) = ω

does not vanish anywhere onM (ρ is the standard volume form on the sphere Sn).

Definition 4.2 Let M be an n-dimensional oriented smooth compact manifold

qM := {deg(φ+) + deg(φ−) | (φ+,φ−) ∈ D(M )}

where deg(φ) is the topological degree of φ.

Theorem 4.3 (i) Let M be a compact oriented spin Riemannian manifold of dimen-
sion 4. Then a solution of (12) exists if and only if the volume of M is quantized to
belong to the invariant qM ⊂ Z.

(ii) Let M be a smooth connected oriented compact spin 4-manifold. Then qM
contains all integers m ≥ 5.

The invariant qM makes sense in any dimension. For n = 2, 3, and any M , it
contains all sufficiently large integers. The casen = 4 ismore difficult; butwe showed
in [11] that for any Spin manifold it contains all integersm > 4. This uses fine results
on the existence of ramified covers of the sphere and on immersion theory going back
to Smale, Milnor and Poenaru. By a result of Iori and Piergallini [35], any orientable
closed (connected) smooth 4-manifold is a simple 5-fold cover of S4 branched over
a smooth surface (meaning that the covering map can be assumed to be smooth)
(Fig. 11). The key lemma12 which allows one to then rely on immersion theory and
apply the fundamental result of Poenaru [36] (on the existence of an immersion in
R

n of any open parallelizable n-manifold) is the following:

Lemma 4.4 Let φ : M → S4 be a smooth map such that φ#(α)(x) ≥ 0 ∀x ∈ M and
let R = {x ∈ M | φ#(α)(x) = 0}. Then there exists amapφ′ such thatφ#(α) + φ′#(α)

does not vanish anywhere if and only if there exists an immersion f : V → R
4 of a

neighborhood V of R. Moreover if this condition is fulfilled one can choose φ′ to be
of degree 0.

The spin condition on the 4-manifold allows one to prove that the neighborhood
V is parallelizable. By a result of A. Haefliger, the spin condition is equivalent to
the vanishing of the second Stiefel-Whitney class w2 of the tangent bundle. In the
converse direction, Jean-Claude Sikorav and Bruno Sevennec found the following
obstruction which implies for instance thatD(CP2) = ∅. LetM be an oriented com-
pact smooth 4-dimensional manifold, then, withw2 the second Stiefel-Whitney class
of the tangent bundle,

D(M ) �= ∅ =⇒ w2
2 = 0

12I am indebted to Simon Donaldson for his generous help in finding this key result.
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Fig. 11 Ramified cover of the sphere

Indeed if D(M ) �= ∅ one has a cover of M by two open sets on which the tangent
bundle is stably trivialized. Thus the above product of two Stiefel-Whitney classes
vanishes.

4.3 Emerging Geometry

Theorem 4.3 shows how 4-dimensional spin geometries arise from irreducible repre-
sentations of simple algebraic relations. There is no restriction to fix theHilbert space
H as well as the actions of the Clifford algebras C± and of J and γ. The remaining
indeterminate operators are D and Y . They fulfill Eq. (11). The geometry appears
from the joint spectrum of the YA± and is a 4-dimensional immersed submanifold in
the 8-dimensional product S4 × S4. Thus this suggests taking the operators Y ,D as
being the correct variables for a first shot at a theory of quantum gravity. In the sequel
the algebraic relations between Y±, D, J , C±, γ are assumed to hold. As we have
seen above a compact spin 4-dimensional manifold M appears as immersed by a
map (Y+,Y−) : M → S4 × S4. An interesting question which comes in this respect
is whether, given a compact spin 4-dimensional manifold M , one can find a map
(Y+,Y−) : M → S4 × S4 which embeds M as a submanifold of S4 × S4. One has
the strong Whitney embedding theorem: M 4 ⊂ R

4 × R
4 ⊂ S4 × S4 so there is no

a-priori obstruction to expect an embedding rather than an immersion. It is worth-
while to mention that a generic immersion would in fact suffice to reconstruct the
manifold. Next, in general, if one starts from a representation of the algebraic rela-
tions, there are two natural questions:

(A): Is it true that the joint spectrum of the YA+ and YB− is of dimension 4 while one
has 8 variables?

(B): Is it true that the volume
∫−D−4 remains quantized?

http://dx.doi.org/10.1007/978-3-319-64813-2_4
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4.3.1 Dimension

The reason why (A) holds in the case of classical manifolds is that in that case the
joint spectrum of the YA and Y ′B is the subset of S4 × S4 which is the image of the
manifoldM by the map x ∈ M 	→ (Y (x),Y ′(x)) and thus its dimension is at most 4.

The reason why (A) holds in general is because of the assumed boundedness of
the commutators [D,Y ] and [D,Y ′] together with the commutativity [Y ,Y ′] = 0
(order zero condition) and the fact that the spectrum of D grows like in dimension 4.

4.3.2 Quantization of Volume

The reason why (B) holds in the general case is that the results of Sect. 4.1.2 apply
separately to Y+ and Y ′−. This gives, up to a normalization constant c4 �= 0, the
integrality

∫
−γ

〈
Y+

[
D,Y+

]4〉
D−4 = c4 < [D], [e − 1/2] >∈ c4 Z

∫
−γ

〈
Y ′

−
[
D,Y ′

−
]4〉

D−4 = c4 < [D], [e′ − 1/2] >∈ c4 Z.

Thus the equality

〈
Z [D,Z]4

〉
+ = 1

2

〈
Y+

[
D,Y+

]4〉 + 1

2

〈
Y ′

−
[
D,Y ′

−
]4〉

.

together with Eq. (11) gives inH(+),

1

2

〈
Y+

[
D,Y+

]4〉 + 1

2

〈
Y ′

−
[
D,Y ′

−
]4〉 = 4!γ

and one gets from γ2 = 1:

Theorem 4.5 In any operator representation of the two sided equation (11) in which
the spectrum of D grows as in dimension 4 the volume (the leading term of the Weyl
asymptotic formula) is quantized, (up to a normalization constant c > 0)

∫
−D−4 ∈ cN.

This quantization of the volume implies that the bothersome cosmological leading
term of the spectral action is now quantized; and thus it no longer appears in the
differential variation of the spectral action. Thus and provided one understands better
how to reinstate all the fine details of the finite geometry (the one encoded by the
Clifford algebras) the variation of the spectral action will reproduce the Einstein
equations coupled with matter.

http://dx.doi.org/10.1007/978-3-319-64813-2_4
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4.4 Final Remarks

Finally, we briefly discuss a few important points which would require more work
of clarification if one wants to get a bit closer to the goal of unification at the “pre-
quantum” level, best described in Einstein’s words (see H. Nicolai, Cern Courier,
January 2017) as follows:

“Roughly but truthfully, one might say: we not only want to understand how
nature works, but we are also after the perhaps utopian and presumptuous goal of
understanding why nature is the way it is and not otherwise.”

1. All our discussion of geometry takes place in the Euclidean signature. Physics
takes place in the Minkowski signature. The Wick rotation plays a key role in
giving a mathematical meaning to the Feynman integral in QFT for flat space-
time but becomes problematic for curved space-time. But following Hawking
and Gibbons one can investigate the Euclidean Feynman integral over compact
4-manifolds implementing a cobordism between two fixed 3-geometries. Two
interesting points occur if one uses the above spectral approach. First the new
boundary terms, involving the extrinsic curvature of the boundary,whichHawking
and Gibbons had to add to the Einstein action, pop up automatically from the
spectral action: as shown in [37]. Second, in the functional integral, the kinetic
term of the Weyl term (i.e. the “dilaton”) has the wrong sign. In our formalism
the higher Heisenberg equation fixes the volume form and automatically freezes
the dilaton.

2. The number of generations is not predicted by the above theory. The need to have
this multiplicity in the representation of the finite algebra AF might be related
to the discussion of Sect. 3.4 in the following way. For non-simply connected
spaces the Poincaré duality KO-fundamental class should take into account the
fundamental group. We skipped over this point in Sect. 3.4; and in the non-
simply connected case one needs to twist the fundamental KO-homology class
by flat bundles. It is conceivable that the generations appear from such a twist
by a 3-dimensional representation. This could be a good motivation to extend
the classical treatment of flat bundles (i.e. of representations of the fundamental
group) to the general case of noncommutative spaces.

Acknowledgements I am grateful to Joseph Kouneiher and Jeremy Butterfield for their help in the
elaboration of this paper.

Appendix

Here is a possible translation of the second quote of Grothendieck:

It must be already fifteen or twenty years ago that, leafing through the modest volume
constituting the complete works of Riemann, I was struck by a remark of his “in passing”.
He pointed out that it could well be that the ultimate structure of space is discrete, while the

http://dx.doi.org/10.1007/978-3-319-64813-2_3
http://dx.doi.org/10.1007/978-3-319-64813-2_3
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continuous representations that we make of it constitute perhaps a simplification (perhaps
excessive, in the long run ...) of a more complex reality; That for the human mind, “the
continuous” was easier to grasp than “the discontinuous”, and that it serves us, therefore, as
an “approximation” to apprehend the discontinuous.

This is a remark of a surprising penetration in the mouth of a mathematician, at a time
when the Euclidean model of physical space had never yet been questioned; in the strictly
logical sense, it is rather the discontinuous which traditionally served as a mode of technical
approach to the continuous.

Mathematical developments of recent decades have, moreover, shown a much more intimate
symbiosis between continuous and discontinuous structures than was imagined, even in the
first half of this century.

In any case finding a “satisfactory” model (or, if necessary, a set of such models, “satisfacto-
rily connecting” to each other) of “continuous”, “discrete” or of “mixed” nature - such work
will surely involve a great conceptual imagination, and a consummate flair for apprehending
and unveiling new type mathematical structures.

This kind of imagination or “flair” seems rare to me, not only among physicists (where
Einstein and Schrödinger seem to have been among the rare exceptions), but even among
mathematicians (and here I speak with full knowledge).

To summarize I predict that the expected renewal (if it must yet come) will come from a
mathematician in soul well informed about the great problems of physics, rather than from
a physicist. But above all, it will take a man with “philosophical openness” to grasp the crux
of the problem. This is by no means a technical one but rather a fundamental problem of
natural philosophy.
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What Every Physicist Should Know
About String Theory

Edward Witten

The aim of this article1 is to describe the minimum that any physicist might want
to know about string theory, focusing on a few basic questions. How does string
theory generalize standard quantum field theory? Why does string theory force us
to unify General Relativity with the other forces of nature, while standard quantum
field theory makes it so difficult to incorporate General Relativity? Why are there no
ultraviolet divergences in string theory? And what happens to Einstein’s conception
of spacetime?

Anyone who has studied physics is aware that although physics—like history—
does not precisely repeat itself, it does rhyme, with similar structures appearing in
different areas. For example, Einstein’s gravitational waves are analogous to electro-
magnetic waves, or to the water waves at the surface of a pond. We will begin with
one of nature’s rhymes—an analogy between the problem of quantum gravity and
the theory of a single particle.

Even though we do not really understand it, quantum gravity is supposed to be
some sort of theory in which, at least from a macroscopic point of view, we average,
in a quantum mechanical sense, over all possible spacetime geometries. (We do
not know to what extent this description is valid microscopically.) The averaging
is performed, in the simplest case, with a weight factor exp(i I/�), where I is the
Einstein-Hilbert action:

I = 1

16πG

∫
d4x

√
g(R − 2�).

1To be published in Foundations of Mathematics and Physics, one century after Hilbert, ed.
Joseph Kouneiher, Mathematical physics Studies, Springer 2017. Adapted with permission
from an article that appeared in the November, 2015 issue of Physics Today.
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Fig. 1 Manifolds of
dimension 1

Here G is Newton’s constant, g is the determinant of the metric tensor, R is the
curvature scalar,� is a cosmological constant, and xi are spacetime coordinates. We
could add matter fields, but we do not seem to need them.

Let us try to make a theory like this with 1 spacetime dimension instead of 4. As
indicated in Fig. 1, there are not many choices for a one-manifold. Moreover, the
curvature scalar is identically zero in 1 dimension and there is no Einstein-Hilbert
action. However, Einstein’s fundamental insight was not the specific Einstein-Hilbert
action but the broader idea that the spacetime geometry can vary dynamically and
the laws of nature are generally covariant (invariant under arbitrary diffeomorphisms
of spacetime). In this more general sense, we can make a nontrivial quantum gravity
theory in dimension 1 provided we include matter fields.

The simplestmatter fields are scalar fields Xi , i = 1, . . . , D. The standardGeneral
Relativistic action for scalar fields is

I =
∫

dt
√
g

(
1

2

D∑
i=1

gtt
(
dXi

dt

)2

− 1

2
m2

)
,

where g = (gtt) is a 1 × 1 metric tensor, and � has been replaced with m2/2.
Let us introduce the “canonical momentum” Pi = dXi/dt . The “Einstein field

equation”—which is the equation of motion obtained by varying the action I with
respect to g—is just

gtt
D∑
i=1

P2
i + m2 = 0.

We pick the gauge gtt = 1, so the equation is P2 + m2 = 0, with P2 = ∑
i P

2
i .

Quantum mechanically (in units with � = 1), Pi = −i ∂
∂Xi

and the meaning of the
equation P2 + m2 = 0 is that the wavefunction �(X) must be annihilated by the
differential operator that corresponds to P2 + m2:

(
−

D∑
i=1

∂2

∂X2
i

+ m2

)
�(X) = 0.
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This is a familiar equation—the relativistic Klein-Gordon equation in D
dimensions—but in Euclidean signature. To give this fact a sensible physical inter-
pretation, we should reverse the kinetic energy of one of the scalar fields Xi so that
the action becomes

I =
∫

dt
√
g

(
1

2
gtt

(
−

(
dX0

dt

)2

+
D−1∑
i=1

(
dXi

dt

)2
)

− m2

)
.

Now the wavefunction obeys a Klein-Gordon equation in Lorentz signature:

(
∂2

∂X2
0

−
D−1∑
i=1

∂2

∂X2
i

+ m2

)
�(X) = 0.

So we have found an exactly soluble theory of quantum gravity in one dimension
that describes a spin 0 particle of mass m propagating in D-dimensional Minkowski
spacetime. Actually, we can replace Minkowski spacetime by any D-dimensional
spacetime M with a Lorentz (or Euclidean) signature metric GI J , the action being
then

I =
∫

dt
√
g

(
1

2

D∑
i=1

gttG I J
dX I

dt

dX J

dt
− m2

)
.

The equation obeyed by the wavefunction is now a Klein-Gordon equation on M :

(
−GI J D

DX I

D

DX J
+ m2

)
�(X) = 0.

This is the massive Klein-Gordon equation in curved spacetime.
Just to make things more familiar, let us go back to the case of flat spacetime

(we work in Euclidean signature to avoid having to keep track of some factors of i).
Let us calculate the amplitude for a particle to start at one point x in spacetime and
end at another point y (Fig. 2). We do this by evaluating a Feynman path integral in

Fig. 2 Propagation of a
particle between specified
spacetime points x and y
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our quantum gravity model. The path integral is performed over all metrics g(t) and
scalar fields Xi (t) on the one-manifold sketched in the figure, with the condition that
Xi (t) is equal to x at one end and to y at the other.

Part of the process of evaluating the path integral in our quantum gravity model
is to integrate over the metric on the one-manifold, modulo diffeomorphisms. But
up to diffeomorphism, this one-manifold has only one invariant, its total length τ ,
which we will interpret as the elapsed proper time. For a given τ , we can take
the one-metric to be just gtt = 1 where 0 ≤ t ≤ τ . Now on this one-manifold, we
have to integrate over all paths X (t) that start at x at t = 0 and end at y at t = τ .
This is the basic Feynman integral of quantum mechanics with the Hamiltonian
being H = 1

2

(
P2 + m2

)
. According to Feynman, the result is the matrix element of

exp(−τH):

G(x, y; τ) =
∫

dD p

(2π)D
eip·(y−x) exp

(
−τ

2
(p2 + m2)

)
.

But we have to remember to do the “gravitational” part of the path integral, which
in the present context means to integrate over τ .

The integral over τ gives our final answer:

G(x, y) =
∫ ∞

0
dτ G(x, y; τ) =

∫
dD p

(2π)D
eip·(y−x) 2

p2 + m2
.

This is the output of the complete path integral—an integral over metrics g(t)
and paths X (t)with the given endpoints, modulo diffeomorphisms—in our quantum
gravity model.

But the function G(x, y) is the standard Feynman propagator in Euclidean sig-
nature, apart from a convention-dependent normalization factor. Moreover, an anal-
ogous derivation in Lorentz signature (for both the spacetime M and the particle
worldline) gives the correct Lorentz signature Feynman propagator, with the iε.

Sowe have interpreted a free particle in D-dimensional spacetime in terms of one-
dimensional quantum gravity. How can we include interactions? There is actually a
perfectly natural way to do this. There are not a lot of smooth one-manifolds, but
there is a large supply of singular one-manifolds in the form of graphs (Fig. 3). Our
“quantum gravity” action makes sense on such a graph. We simply take the same
action that we used before, summed over all of the line segments that make up the
graph.

Now to do the quantum gravity path integral, we have to integrate over all metrics
on the graph, up to diffeomorphism. The only invariants are the total lengths or
“proper times” of each of the segments. Some of the lines in Fig. 3 have been labeled
by length or proper time variables τi .

The natural amplitude to compute is one in which we hold fixed the positions
x1, . . . , x4 of the external particles and integrate over all the τ ’s and over the paths
the particle follow on the line segments. To evaluate such an integral, it is convenient
to first perform a computation in which we also hold fixed the positions y1, . . . , y4
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Fig. 3 A graph with
trivalent vertices. Some lines
have been labeled with
proper time variables
τ1, τ2, τ3

Fig. 4 The natural path
integral to consider is one in
which the positions
x1, . . . , x4 of the external
particles are fixed, and one
integrates over everything
else. To perform such a path
integral, it is convenient to
first evaluate an integral in
which the positions
y1, . . . , y4 of vertices are
also fixed

of the vertices in the graph. This means that all endpoints of all segments are labeled
(Fig. 4). The computation that we have to perform on each segment is the same
as before and gives the Feynman propagator. The final integration over y1, . . . , y4
imposes momentum conservation at each vertex. Thus we arrive at Feynman’s recipe
to compute the amplitude associated to a Feynman graph: a Feynman propagator for
each line, and an integration over all momenta subject to momentum conservation.

We have arrived at one of nature’s rhymes. If we imitate in one dimension what
we would expect to do in D = 4 dimensions to describe quantum gravity, we arrive
at something that is certainly important in physics, namely ordinary quantum field
theory in a possibly curved spacetime. In the example that we have considered, the
“ordinary quantum field theory” is scalar φ3 theory, because of the particular matter
system we started with and assuming we take the graphs to have cubic vertices.
Quartic vertices (for instance) would give φ4 theory, and a different matter system
would give fields of different spins. So many or maybe all quantum field theories in
D dimensions can be derived in this sense from quantum gravity in 1 dimension.

There is actually a much more perfect rhyme if we repeat this in two dimensions,
that is for a string instead of a particle. We immediately run into the fact that a two-
manifold 	 can be curved (Fig. 5). Related to this, two-dimensional metrics are not
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Fig. 5 Generically, a
two-dimensional surface has
nonzero Ricci curvature

all locally equivalent under diffeomorphisms. A two-dimensional metric in general
is a 2 × 2 symmetric matrix constructed from 3 functions

gi j =
(
g11 g12
g21 g22

)
, g21 = g12.

But a transformation of the two-dimensional coordinates, generated by

σ i → σ i + hi (σ ), i = 1, 2,

can only remove two functions, leaving the Ricci curvature scalar as an invariant.
All this suggests that the integral over two-dimensional metrics will not much

resemble what we found in the one-dimensional case. But now we notice that the
obvious analog of the action function that we used for the particle, namely

I =
∫

	

d2σ
√
g gi jG I J

∂X I

∂σ i

∂X J

∂σ j
,

is conformally-invariant, that is, it is invariant under a Weyl transformation of the
metric

gi j → eφgi j

for any real function φ on 	. This is true precisely in two dimensions (and only2

if there is no “cosmological constant”). If we require Weyl invariance as well as
diffeomorphism invariance, then this is enough to make any metric gi j on 	 locally
trivial (locally equivalent to δi j ), similarly to what we said for one-manifolds.

Some very pretty 19th century mathematics now comes into play. A two-manifold
whose metric is given up to a Weyl transformation is called a Riemann surface. As
in the one-dimensional case, a Riemann surface can be characterized up to diffeo-
morphism and Weyl transformation by finitely many parameters. There are two big
differences: the parameters are now complex rather than real, and their range is

2While maintaining conformal invariance, we can add to the action the usual Einstein-Hilbert term,
the integral of the scalar curvature R. This plays no role in one dimension because a one-manifold has
no intrinsic curvature. In two dimensions, there is a curvature scalar but its integral 1

4π

∫
	
d2x

√
gR

is a topological invariant, the Euler characteristic of 	. We can and should include this term in
the action. It turns out that the coefficient with which it appears determines the “string coupling
constant,” the strength with which strings interact.
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restricted in a way that leaves no room for an ultraviolet divergence. We will return
to that last point later.

We give an example of the relation between the one-dimensional parameters and
the two-dimensional ones in Fig. 6. A metric on the indicated graph depends up to
diffeomorphism on three real length or proper time parameters τ1, τ2, τ3. If the graph
is “thickened” to a two-manifold, then a metric on this two-manifold depends up
to diffeomorphism and Weyl transformation on three complex parameters τ̂1, τ̂2, τ̂3.
For another illustration of the relation between a Feynman graph and a corresponding
Riemann surface, see Fig. 7.

Now we come to a deeper rhyme. We used one-dimensional quantum gravity to
describe quantum field theory in a possibly curved spacetime, but not to describe
quantum gravity in spacetime. The reason that we did not get quantum gravity in
spacetime is that there is no correspondence between operators and states in quantum
mechanics. We considered the one-dimensional quantum mechanics with action

Fig. 6 A Feynman diagram with proper time parameters τ1, τ2, τ3, and a corresponding Riemann
surface obtained by slightly thickening all the lines in the Feynman diagram into tubes that join
together smoothly. The Riemann surface is parametrized up to diffeomorphism and Weyl transfor-
mation by complex variables τ̂1, τ̂2, τ̂3

Fig. 7 Aone-loop Feynman diagram for 2 → 2 scattering (left), and its string theory analog (right),
which is obtained by thickening all of the lines in the Feynman diagram into tubes, and replacing
the vertices in the Feynman diagram by smooth junctions between tubes
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I =
∫

dt
√
g

(
1

2
gttG I J

dX I

dt

dX J

dt
− 1

2
m2

)
.

What turned out to be the external states in a Feynman diagram were just the states
in this quantummechanics. A deformation of the spacetime metric is represented not
by a state in this quantum mechanics, but by an operator. When we make a change
δGI J in the spacetime metric GI J , the action changes by I → I + ∫

dt
√
gO, where

O = 1
2g

ttδGI J∂t X I ∂t X J is the operator that encodes a change in the spacetime
metric.

A state would appear at the end of an external line in the Feynman graph. But an
operatorO such as the one describing a perturbation in the spacetime metric appears
at an interior point in the graph, as in Fig. 8. Technically, to compute the effect of
the perturbation, we include in the path integral a factor δ I = ∫

dt
√
gO, integrating

over the position at which the operatorO is inserted. Just one possible insertion point
is shown in the figure. Since states enter at ends of external lines and operators are
inserted at internal points, there is in general no simple relation between operators
and states.

But in conformal field theory, there is a correspondence between states and opera-
tors; this correspondence actually is important in some areas of statistical mechanics
and condensed matter physics, as well as in string theory. And hence the oper-
ator O = gi jδGI J∂i X I ∂ j X J that represents a fluctuation in the spacetime metric
automatically represents a state in the quantum mechanics. That is why the theory
describes quantum gravity in spacetime.

The operator-state correspondence arises from a 19th century relation between
two pictures that are conformally equivalent. In Fig. 9, we show a two-manifold 	

with a marked point p at which an operatorO is inserted. In Fig. 10, the point p has
been removed from 	, and a Weyl transformation has been made of the metric of
	, converting what used to be a small neighborhood of the point p to a semi-infinite

Fig. 8 A deformation of the spacetime metric G corrresponds to an operatorO that can be inserted
at some internal point on a Feynman graph, as indicated here by the ×. By contrast, a state in the
quantum mechanics would be attached to the end of one of the outgoing lines of the graph
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Fig. 9 A Riemann surface
with a marked point labeled
p at which an operator O is
inserted

Fig. 10 After deleting the
marked point, the Riemann
surface of Fig. 9 is
conformally equivalent to
this one, with an outgoing
“tube” that is analogous to an
external line of a Feynman
graph. The operator O that
was inserted at the marked
point is converted to a
quantum state of the string
that propagates on the tube

tube. This is analogous to an external line of a Feynman graph, and what would be
inserted at the end of the tube is a quantum string state. The relation between the two
pictures is the correspondence between operators and states.

To understand the Weyl transformation between the two pictures, consider the
metric of the plane in polar coordinates:

ds2 = dr2 + r2dθ2.

We think of inserting an operator at the point r = 0. Now remove this point, and
make a Weyl transformation, multiplying ds2 by 1/r2. This gives a new metric

(ds ′)2 = 1

r2
dr2 + dφ2.

In terms of w = log r , −∞ < w < ∞, the new metric is

(ds ′)2 = dw2 + dφ2,

which describes a cylinder. The point r = 0 in one description corresponds in the
other description to the end w → −∞ of the cylinder. What is interpreted in one
description as an operator inserted at r = 0 is interpreted in the other description as
a quantum state flowing in from w = −∞ (Fig. 11).
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Fig. 11 Left: A plane R
2

with a point p labeled.
Right: The plane with p
omitted is equivalent via a
Weyl transformation to a
cylinder with flat metric. The
point p is mapped to the
“bottom” end of the cylinder

Thus, string theory describes quantum gravity in spacetime. But it does not
describe quantum gravity only. It describes quantum gravity unified with a vari-
ety of particles and forces in spacetime. These other particles and forces correspond
to other operators in the conformal field theory of the string—apart from the operator
O that is related to a fluctuation in the spacetime geometry—or equivalently to other
quantum states of the string.

The next step is to explain why this type of theory does not have ultraviolet
divergences. This contrasts sharply with what happens if we simply apply textbook
recipes of quantization to the Einstein-Hilbert action for gravity. If we do that, we
encounter intractable ultraviolet divergences that were first found in the 1930s. Back
then, it was not entirely clear that this type of problem is special to gravity, because
there were also troublesome ultraviolet divergences when other particle forces were
studied in the framework of relativistic quantum theory. However, as the problems
were overcome for the other forces—most completely with the emergence of the
Standard Model of particle physics in the 1970s—it became clear that the problems
for gravity are serious.

To understand why there are no ultraviolet divergences in string theory, we should
begin by asking how ultraviolet divergences arise in ordinary quantum field theory.
They arise when all the proper time variables in a loop go simultaneously to zero. So
in the example of Fig. 12, there can be an ultraviolet divergence when τ1, τ2, τ3, τ4
simultaneously vanish.

It is true that, as stated earlier, a Riemann surface can be characterized by complex
parameters that roughly parallel the proper time parameters of a Feynman graph
(Fig. 7). But there is one very important difference, which is the reason there are no
ultraviolet divergences in string theory. The proper time variables τi of a Feynman
graph cover the whole range 0 ≤ τi ≤ ∞. By contrast, the corresponding Riemann
surface parameters τ̂i are bounded away from 0. Given a Feynman diagram, one can
make a corresponding Riemann surface, but only if the proper time variables τi are
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Fig. 12 This Feynman
diagram can generate an
ultraviolet divergence in the
limit that the proper time
parameters τ1, τ2, τ3, τ4 in
the loop all vanish

Fig. 13 This simple
Feynman diagram, with a
single proper time parameter
τ , underlies the one-loop
cosmological constant in
quantum field theory

not too small. The region of the parameter space where ultraviolet divergences occur
in field theory simply has no counterpart in string theory.

Instead of giving a general explanation of this, we will just explain how it works
in the case of the one-loop cosmological constant. The Feynman diagram is a simple
circle (Fig. 13), with a single proper time parameter τ . The resulting expression for
the one-loop cosmological constant is

1 = 1

2

∫ ∞

0

dτ

τ
Tr exp(−τH)

where H is the particle Hamiltonian. This integral diverges at τ = 0, and the diver-
gence is more severe than it looks because of the momentum integration that is part
of the trace.

Going to string theory means replacing the classical one-loop diagram with its
stringy counterpart, which is a torus (Fig. 14). Nineteenth century mathematicians
showed that every torus is conformally equivalent to a parallelogram in the planewith
opposite sides identified (Fig. 15). But to explain the idea without any extraneous
technicalities, we will consider only rectangles instead of parallelograms. We label
the height and base of the rectangle as s and s ′, respectively (Fig. 16). Only the ratio

u = s ′

s
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Fig. 14 A torus, which
underlies the one-loop
cosmological constant in
string theory

Fig. 15 A parallelogram
with opposite sides identified
to make a torus

Fig. 16 A rectangle with
height and base labeled as s
and s′

is conformally-invariant. Also since it is arbitrary what we call the “height” as
opposed to the “base” of a rectangle, we are free to exchange s ↔ s ′, which corre-
sponds to

u ↔ 1

u
.

So we can restrict to s ′ ≥ s, and thus the range of u is

1 ≤ u < ∞.

The proper time parameter τ of the particle corresponds to u in string theory, with
the key difference that 0 ≤ τ < ∞ but 1 ≤ u < ∞. So the one-loop cosmological
constant in field theory is

1 = 1

2

∫ ∞

0

dτ

τ
Tr exp(−τH)
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but (in the approximation of considering only rectangles and not parallelograms),
the one-loop cosmological constant in string theory is

1 = 1

2

∫ ∞

1

du

u
Tr exp(−τH).

There is no ultraviolet divergence, because the lower limit on the integral is 1 instead
of 0. (A more complete analysis with parallelograms shifts the lower bound on u
from 1 to

√
3/2.)

We have described a special case, but this is a general story. The stringy formulas
generalize the field theory formulas, but without the region that can give ultraviolet
divergences in field theory. The infrared region (τ → ∞oru → ∞) lines up properly
between field theory and string theory and this is why a string theory can imitate field
theory in its predictions for the behavior at low energies or long times and distances.

Our final goal here is to explain, at least partly, in what sense spacetime “emerges”
from something deeper if string theory is correct. Let us focus on the following
fact. The spacetime M with its metric tensor GI J (X) was encoded as the data that
enabled us to define a two-dimensional conformal field theory that we used in this
construction. Moreover, that is the only way that spacetime entered the story.

We could have used in this construction a different two-dimensional conformal
field theory (subject to a fewgeneral rules thatwewill omit). Now ifGI J (X) is slowly
varying (the radius of curvature is everywhere large), the Lagrangian by which we
described the two-dimensional conformal field theory is weakly coupled and useful.
This is the situation in which string theory matches to ordinary physics that we
are familiar with. We may say that in this situation, the theory has a semiclassical
interpretation in terms of strings in spacetime (and this will reduce at low energies
to an interpretation in terms of particles and fields in spacetime).

When we get away from a semiclassical limit, the Lagrangian is not so useful and
the theory does not have any particular interpretation in terms of strings in spacetime.
This leads tomany nonclassical consequences, such as the ability tomake continuous
transitions from one spacetime manifold to another, or the fact that certain types of
singularities in classical General Relativity (but not black hole singularities) turn out
to represent perfectly smooth and harmless situations in string theory. An example
of the nonclassical behavior of string theory is sketched in Fig. 17.

We can say that from this point of view, spacetime “emerges” from a seemingly
more fundamental concept of two-dimensional conformal field theory. In general a
string theory comes with no particular spacetime interpretation, but such an inter-
pretation can emerge in a suitable limit, somewhat as classical mechanics sometimes
arises as a limit of quantum mechanics.

This is not a complete explanation of the sense in which, in the context of string
theory, spacetime emerges from something deeper. A completely different side of
the story, beyond the scope of the present article, involves quantum mechanics and
the duality between gauge theory and gravity. However, what we have described is
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Fig. 17 This picture schematically represents a family of two-dimensional conformal field theories
that depends on two parameters. In different limits, these theories have semiclassical interpretations
in terms of strings propagating in a spacetime M1, M2, or M3. Generically there is no such inter-
pretation. One can make a continuous transition between the different possible classical spacetimes
that appear at corners of the picture by passing through the “stringy” region in the interior

certainly one important and relatively well-understood piece of the puzzle. It is at
least a partial insight about how spacetime as conceived by Einstein can emerge from
something deeper.
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Abstract We consider Hilbert’s sixth problem on the axiomatization of physics
starting with a higher degree Heisenberg commutation relation involving the Dirac
operator and the Feynman slash of scalar fields. The two sided version of the com-
mutation relation in dimension 4 implies volume quantization and determines a
noncommutative space which is a tensor product of continuous and discrete spaces.
This noncommutative space predicts the full structure of a unified model of all par-
ticle interactions based on Pati-Salam symmetries or, as a special case, the Standard
Model. We study implications of this quantization condition on Particle Physics,
General Relativity, the cosmological constant and dark matter. We demonstrate that,
with little input, noncommutative geometry gives a compelling and attractive picture
about the nature and structure of space-time.

1 Introduction

DavidHilbert research on the axiomatization of geometry led him to suggest the sixth
problem on his list for the axiomatization of Physics which have received the least
attention [1]. Hilbert contributed prominently to the formulation of the gravitational
equations in the General Theory of Relativity which was presented in November
1915, almost simultaneously with Einstein [2, 3]. Weyl has asserted that during
the period 1910–1922 Hilbert has devoted considerable time to research in Physics
which was an integral part of his mathematical world. Indeed, in 1915 Hilbert has
presented a unified theory of electromagnetism and gravitation based on the use of
the variational principle derived in an axiomatic fashion from the two principles of
general invariance and “Mie’s axiom of the world function”. This attempt can be
considered as the seed that motivated much work on ideas on unification of all fun-
damental interactions such as in Kaluza-Klein theory, supersymmetry, superstring
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theory and noncommutative geometry. In this article I will follow up on the con-
tribution of Alain Connes to this volume and show that starting with the axioms of
noncommutative geometry supplemented by a minimal number of physical assump-
tions would result, unambiguously, in a unified theory of all fundamental interactions
and matter content of space-time [4, 5]. We will be able to establish a link between
the quantization of volume of space at Planck energy and the constituents of mat-
ter and their symmetries. In addition we uncover the origin of the Higgs fields and
symmetry breaking, and indicate possible solutions to long standing problems such
as resolving the singularities in GR, dark matter and dark energy.

All the material covered in this review is a result of a long time collaboration
with Alain Connes which started in 1996 and continues until now. More recently
our collaboration includedWalter van Suijlekom and, in separate publications, Slava
Mukhanov. An excellent introduction to the material covered in this review is the
accompanying article by Alain Connes in this volume. However, an attempt is made
to make this article self-contained.

The Planck scale is the scale at which all rescaled curvature invariants of a Rie-
mannian manifold are of the same order. The volume of any manifold at scales below
the Planck scale, will be many orders of magnitude larger than that scale. To avoid
the problem of infinities, which are expected to arise in a quantized theory of gravity,
it is a natural proposition to assume that the volume of a physical space is an integer
multiple of a unit volume of Planckian size and thus provide a cutoff scale. It is
well known that the degree of a smooth map Y from a connected, compact, oriented
n-manifold to the sphere Sn is an integer

Y : Mn → Sn, (1)

where Y isR
n+1 valued on Mn. This map is normalized by 〈Y (x) ,Y (x)〉 = 1 where

x ∈ Mn and if we let � be the positive normed determinant function in R
n+1, then

the degree of the map is given by [6]

deg (Y ) ≡ 1

κn

∫

Mn

〈
�,Y (dY )n

〉 ∈ Z (2)

where κn is the volume of the n-sphere:

κ2m = 2m+1

(2m − 1)!!π
m, κ2m+1 = 2

m!π
m+1, m = 1, . . . ,∞. (3)

We propose to identify the integrand in (2), which is an n-form over an n-dimensional
connected, compact oriented manifold, with the volume form:

wn = 1

κn

〈
�,Y (dY )n

〉
, (4)
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then the volume of Mn will be an integer multiple of the unit Planckian n-sphere.
From this we deduce that the pullback Y ∗ (wn) is a differential form that does not
vanish anywhere. This in turn implies that the Jacobian of the map Y does not vanish
anywhere, and that Y is a covering of the sphere. The sphere is simply connected,
and on each connected component Mj ⊂ Mn , the restriction of the map Y to Mj is a
diffeomorphism, implying that the manifold must be disconnected, with each piece
having the topology of a sphere [7]. We will show how to avoid this unsatisfactory
conclusion and how the attractive idea of volume quantization works in a convincing
way within the formulation of noncommutative geometry.

Extensive research over the last two decades have shown that there are many
advantages toworkwith noncommutative geometry instead of Riemannian geometry
[4]. The approach is spectral in nature and its concepts are modeled after quantum
mechanics where geometry is defined in terms of spectral data. These are specified
in terms of spectral triple (A,H, D) where A is an associative algebra with unit 1
and involution ∗, H a complex Hilbert space carrying a faithful representation of
the algebra A and D is a slef-adjoint operator onH with the resolvent (D − λ1)−1,
where λ /∈ R of D, compact. The operator D plays the role of inverse line element.
In addition the real structure J is an anti-unitary operator that sends the algebra A
to its commutant Ao such that [8]

[
a, bo

] = 0, a, b ∈ A, bo = Jb∗ J−1 ∈ Ao. (5)

The chirality operator γ is a unitary operator in H defined in even dimensions such
that γ 2 = 1 and commutes with A

[
γ, a

] = 0 ∀a ∈ A. (6)

There are commutativity or anti-commutativity relations between D, J, and γ :

J 2 = ε, J D = ε′DJ, Jγ = ε′′γ J, Dγ = −γ D, (7)

where ε, ε′, ε′′ ∈ {−1, 1} . The operators γ and J are similar to the chirality and
charge conjugation operators and to every fixed value of ε, ε′, ε′′ is associated a KO
dimension, which may be non-metric, and thus is defined only modulo 8. It is then
evident that the generalized Heisenberg relation must be modified to include not only
themapping Y fromMn to Sn but also the effects of the operator J which requires two
mappings Y and Y ′. We have shown that using the two mappings Y and Y ′ to set the
volume quantization condition would avoid limiting the topology of the manifold to
be that of a sphere in dimensions two and four [7, 9].We shall elaborate on the formof
the generalized Heisenberg relation and show that this leads, unambiguously, to the
construction of a noncommutative space whose geometry gives naturally a unified
model of all particle interactions based on Pati-Salam symmetry group which also
includes the Standard Model as a special case.

This article is organized as follows. In Sect. 2 the conjectured Heisenberg quan-
tization two sided relation is constructed in such a way as to give the volume of the



214 A. H. Chamseddine

underlyingmanifold to be given by the sum of two integers times the volume of a unit
Planckian sphere. In Sect. 3 the algebra of the finite noncommutative space is derived
to be the sum of two algebras, which in dimension four, is given by the sum M2 (H)

and M4 (C) [10–12]. In Sect. 4 we determine the noncommutative space and make
contact with our previous work on noncommutative geometry [13–15]. In Sect. 5
we show the the unified model associated with this noncommutative space is of the
Pati-Salam type and in Sect. 6 we give the StandardModel obtained as a limiting case
[15]. Section 7 is a summary of the minimal Pati-Salammodel [12, 16]. In Sect. 8 we
present the spectral action principle and calculate the spectral action of the Standard
Model. In Sect. 9 we study consequences of volume quantization on the equations of
motion in both instances when the fields Y and Y ′ are with or without kinetic terms.
In Sect. 10 we give the solitonic solutions and show that these are identical to the
O(5) non-linear gravitational sigmamodel. In Sect. 11 we consider the case of a Rie-
mannian manifold with Lorentzian signature where the four-dimensional manifold
is viewed as a 3 + 1 space formed from the motion of three dimensional hypersur-
faces. We show that it is possible to impose quantization of the three dimensional
compact space provided that the field mapping the one-dimensional non-compact
space satisfies a length preserving relation. In Sect. 12 we further discuss the condi-
tions under which a quantization of a two dimensional hypersurface is possible. In
Sect. 13 we study the equations of motion for the cases of three dimensional volume
and two dimensional surface quantization. We discuss quantization on the special
spaces R × S3 and R

2 × S2. Section14 contains a discussion and the conclusion.

2 Heisenberg Volume Quantization in Dimensions 2 and 4

For a Riemannian manifold of dimension n the algebraA is taken to beC∞ (M) , the
algebra of continuously differentiable functions, while the operator D is identified
with the Dirac operator given by

DM = γ μ

(
∂

∂xμ
+ ωμ

)
, (8)

where γ μ = eμ
a γ a and ωμ = 1

4ωμbcγ
bc is the SO(n) Lie-algebra valued spin-

connection with the (inverse) vielbein eμ
a being the square root of the (inverse) metric

gμν = eμ
a δabeν

b . The gamma matrices γ a are anti-hermitian (γ a)∗ = −γ a and define
the Clifford algebra

{
γ a, γ b

} = −2δab. The Hilbert space H is the space of square
integrable spinors L2 (M, S) . The Dirac operator is Hermitian with respect to the
inner product

(ψ, DMψ) = (DMψ,ψ) =
∫
dnxeψ∗DMψ, (9)

where e = det
(
eaμ

)
with eaμ being the inverse of eμ

a . The chirality operator γ in even
dimensions is then given by
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γ = (i)
n
2 γ 1γ 2 . . . γ n (10)

From the above discussion, it is very suggestive to associate with the map fields Y A,

A = 1, 2, . . . , n + 1 a Clifford algebra valued field Y = Y AA where [17]

A ∈ Cκ , {A, B} = 2κ δAB, (A)
∗ = κA. (11)

Here κ = ±1 and Cκ ⊂ Ms(C) is the algebra of s × s matrices, where s = 2n/2. A
generalization of the Heisenberg commutation relation [p, q] = −i� is conjectured
to be given by [7]

〈Y [D,Y ] . . . [D,Y ]〉 = √
κ γ (n terms [D,Y ]) , (12)

where Y ∈ C∞ (M) ⊗ Cκ is of the Feynman slashed form Y = Y AA, and fulfill the
equations

Y 2 = κ, Y ∗ = κY. (13)

The notation 〈T 〉 means the trace of T with respect to the above matrix algebra
Ms(C). In a coordinate basis Eq. (12) takes the form [7]

1

n!ε
μ1μ2...μnεA1A2...An+1Y

An+1∂μ1Y
A1∂μ2Y

A2 . . . ∂μn Y
An = det

(
eaμ

)
, (14)

which is a constraint on the volume form. This can be thought of as a generalization of
the coordinate-momenta [p, q] = −i� phase space quantization where p is replaced
with the Dirac operators D and q is replaced with the Feynman slash coordinates Y .
We have seen, however, that this quantization condition implies that the n-manifold
decomposes into a set of bubbles. The difference now is that the quantization con-
dition is given in terms of the noncommutative data. One cannot fail to notice that
the operator J is missing from Eq. (12) which suggests that this equation must be
modified to take this operator into account. We first define the projection operator
e = 1

2 (1 + Y ) satisfying e2 = e [18] but now there are two possibilities, Y corre-
sponding to the case κ = 1 and Y ′ to the case κ = −1. Thus let Y = Y AA ≡ Y and
let Y ′ = iJYJ−1 and ′

A = i JA J−1 so that we can write

Y = Y AA, Y ′ = Y ′A′
A, (15)

satisfying Y 2 = 1 and Y ′2 = 1. The projection operators e = 1
2 (1 + Y ) and

e′ = 1
2

(
1 + Y ′) satisfy e2 = e, e′2 = e′ with e and e′ commuting. This allows to

define the projection operator E = ee′ and the associated field

Z = 2E − 1, (16)

satisfying Z2 = 1. The conjectured quantization condition takes the elegant form of
a two-sided relation [7, 9]
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〈
Z [D, Z ]n

〉 = γ. (17)

Our proposal is that this quantization condition is valid for all noncommutative
geometries defined by the spectral data where the metric dimension of the operator
D as determined from the Weyl asymptotic formula is less than or equal to four. The
presence of the chirality operator γ indicates that the dimension n should be even,
and this would limit us to the two cases n = 2 and n = 4. For odd dimensional n the
form of the quantization condition should be modified, but will not be considered
here. We have shown that for both n = 2 and n = 4 Eq. (17) splits as the sum of two
pieces [7] 〈

Z [D, Z ]n
〉 = 〈

Y [D,Y ]n
〉 + 〈

Y ′ [D,Y ′]n 〉 . (18)

This implies that the volume form of the n-dimensional Riemannian manifold is the
sum of two n-forms and thus

det
(
eaμ

) = 1

n!ε
μ1μ2...μnεA1A2...An+1Y

An+1∂μ1Y
A1∂μ2Y

A2 . . . ∂μn Y
An+ (19)

+ 1

n!ε
μ1μ2...μnεA1A2...An+1Y

′An+1∂μ1Y
′A1∂μ2Y

A2 . . . ∂μn Y
′An . (20)

Consider the smooth maps φ± : Mn → Sn then their pullbacks φ#± would satisfy

φ#
+ (α) + φ#

− (α) = ω, (21)

where α is the volume form on the unit sphere Sn [19] and ω (x) is an n−form that
does not vanish anywhere on Mn. We stress that the quantization condition does
not split as the sum of two terms except for n = 2, 4, however, if one starts with
the conjecture that the volume form is the sum of the two traces in terms of the
coordinates Y and Y ′ then Eq. (21) would follow and would then not be limited to
the two values for n. We have shown that for a compact connected smooth oriented
manifold with n < 4 one can find two maps φ#+ (α) and φ#− (α) whose sum does

not vanish anywhere, satisfying Eq. (21) such that
∫
M

ω ∈ Z. The proof for n = 4 is

more difficult and there is an obstruction unless the second Stieffel-Whitney class
w2 vanishes, which is satisfied if M is required to be a spin-manifold and the volume
to be larger than or equal to five units. The key idea in the proof is to note that the
kernel of the map Y is a hypersurface � of co-dimension 2 and therefore [7]

dim� = n − 2. (22)

We can then construct a map Y ′ = Y ◦ ψ where ψ is a diffeomorphism on M such
that the sum of the pullbacks of Y and Y ′ does not vanish anywhere. The important
point to stress here is that the conjectured two sided relation (17) is taken to hold
for arbitrary noncommutative spaces where n ≤ 4 where n is the dimension as
determined in the Weyl asymptotic formula for the growth of eigenvalues of the
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Dirac operator, and is not restricted for Riemannian manifolds. In other words, one
can seek solutions for this equation in general and find the noncommutative space
satisfying this equation.

3 Clifford Algebras and Feynman Slash

We have seen that the coordinates Y are defined over a Clifford algebra C+ spanned
by {A, B} = 2δAB . For n = 2, C+ = M2 (C) while for n = 4, C+ = M2 (H) ⊕
M2 (H) where H is the field of quaternions [17]. However, for n = 4, since we will
bedealingwith irreducible representationswe takeC+ = M2 (H) .Similarly thecoor-
dinatesY ′ aredefinedover theCliffordalgebraC− spannedby

{
′

A, 
′
B

} = −2δAB and
for n = 2,C− = H ⊕ H and for n = 4,C− = M4 (C) .The operator J acts on the two
algebrasC+ ⊕ C− in the form J (x, y) = (y∗, x∗) (i.e. it exchanges the two algebras
and takes the Hermitian conjugate). The coordinates Z = 1

2 (Y + 1)
(
Y ′ + 1

) − 1,
then define thematrix algebras [10]

AF = M2 (C) ⊕ H, n = 2 (23)

AF = M2 (H) ⊕ M4 (C) , n = 4. (24)

One, however,must remember that themapsY andY ′ are functions of the coordinates
of the manifold M and therefore the algebra associated with this space must be

A = C∞ (M,AF ) (25)

= C∞ (M) ⊗ AF . (26)

To see this consider, for simplicity, the n = 2 case with only the map Y. The Clifford
algebra C− = H is spanned by the set

{
1, A

}
, A = 1, 2, 3, where

{
A, B

} =
−2δAB . We then consider functions which are made out of words of the variable Y
formed with the use of constant elements of the algebra [18]

∞∑
i=1

a1Ya2Y . . . aiY, ai ∈ H,

which will generate arbitrary functions over the manifold, which is the most general
form since Y 2 = 1. One can easily see that these combinations generate all the
spherical harmonics. This result could be easily generalized by considering functions
of the fields

Z = 1

2
(Y + 1)

(
Y ′ + 1

) − 1, Y ∈ H, Y ′ ∈ M2 (C) ,
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showing that the noncommutative algebra generated by the constant matrices and
the Feynman slash coordinates Z is given by [18]

A = C∞ (M2) ⊗ (H+M2 (C)) .

4 Finite Noncommutative Space

Having explained the simple case n = 2, for the remainder of this paper we restrict
ourselves to the physical case of n = 4. Here the algebra is given by

A = C∞ (M4) ⊗ (M2(H)+M4 (C)) . (27)

The associated Hilbert space is

H = L2 (M4, S) ⊗ HF . (28)

The Dirac operator mixes the finite space and the continuous manifold non-trivially

D = DM ⊗ 1 + γ5 ⊗ DF , (29)

where DF is a self adjoint operator in the finite space. The chirality operator is

γ = γ5 ⊗ γF , (30)

and the anti-unitary operator J is given by

J = JMγ5 ⊗ JF , (31)

where JM is the charge-conjugation operatorC onM and JF the anti-unitary operator

for the finite space. Thus an element � ∈ H is of the form � =
(

ψA

ψA′

)
where ψA

is a 16 component L2 (M, S) spinor in the fundamental representation of AF of the
form ψA = ψα I where α = 1, . . . , 4 with respect to M2 (H) and I = 1, . . . , 4 with
respect to M4 (C) and where ψA′ = Cψ∗

A is the charge conjugate spinor to ψA [15].
The chirality operator γ must commute with elements of A which implies that γF

must commute with elements in AF . Commutativity of the chirality operator γF

with the algebra AF and that this Z/2 grading acts non-trivially reduces the algebra
M2 (H) to HR ⊕ HL [10]. Thus the γF is identified with γF = 5 = 1234 and
the finite space algebra reduces to

AF = HR ⊕ HL ⊕ M4 (C) . (32)
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This can be easily seen by noting that an element of M2 (H) takes the form

(
q1 q2
q3 q4

)

where each qi , i = 1, . . . , 4, is a 2 × 2 matrix representing a quaternion. Tak-

ing the representation of 5 =
(
12 0
0 −12

)
to commute with M2 (H) implies that

q2 = 0 = q3, thus reducing the algebra to HR ⊕ HL . Therefore the index α =
1, . . . , 4 splits into two parts,

.
a = .

1,
.

2 which is a doublet under HR and a = 1, 2
which is a doublet under HL . The spinor � further satisfies the chirality condition
γ� = � which implies that the spinors ψ.

aI are in the (2R, 1L , 4) with respect to
the algebra HR⊕HL ⊕ M4 (C) while ψaI are in the (1R, 2L , 4) representation.1 The
finite space Dirac operator DF is then a 32 × 32 Hermitian matrix acting on the 32
component spinors �. In addition we take three copies of each spinor to account
for the three families, but will omit writing an index for the families. At present we
have no explanation for why the number of generations should be three. The Dirac
operator for the finite space is then a 96 × 96 Hermitian matrix. The Dirac action is
then given by [14]

(J�, D�) . (33)

We note that we are considering compact spaces with Euclidean signature and thus
the condition J� = � could not be imposed. It could, however, be imposed if the
four dimensional space is Lorentzian [20].The reason is that the KO dimension of
the finite space is 6 because the operators DF , γF and JF satisfy

J 2
F = 1, JF DF = DF JF , JFγF = −γF JF . (34)

The operators DM , γM = γ5, and JM = C for a compact manifold of dimension 4
satisfy

J 2
M = −1, JM DM = DM JM , JMγ5 = γ5 JM . (35)

Thus the KO dimension of the full noncommutative space (A,H, D) with the dec-
orations J and γ included is 10 and satisfies

J 2 = −1, JD = DJ, Jγ = −γ J. (36)

We have shown in [14] that the path integral of the Dirac action, thanks to the
relations J 2 = −1 and Jγ = −γ J, yields a Pfaffian of the operator D instead of
its determinant and thus eliminates half the degrees of freedom of � and have the
same effect as imposing the condition J� = �.

We have also seen that the operator J sends the algebra A to its commutant, and
thus the full algebra acting on the Hilbert spaceH isA ⊗ Ao.Under automorphisms
of the algebra

� → U�, (37)

1Due to a typographical error in the abstract of [12] the fermionic representation was listed incor-
rectly as (2R, 2L , 4) while in the body of the paper the correct representation appears.
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whereU = uû with u ∈ A, û ∈ Ao with
[
u, û

] = 0, it is clear that Dirac action is not
invariant. This is similar to the situation in electrodynamics where the Dirac action is
not invariant under local phase transformations but the invariance is easily restored
by introducing the vector potential Aμ through the transformation

γ μ∂μ → γ μ
(
∂μ + ieAμ

)
. (38)

In our case, the Dirac operator D is replaced with

DA = D + A, (39)

where the connection A is given by [11]

A =
∑

aâ
[
D, bb̂

]
. (40)

It can be shown that under automorphisms U of the algebra we have

DA → UDAU
∗. (41)

The connection A splits into three pieces

A = A(1) + J A(1) J
−1 + A(2), (42)

where

A(1) =
∑

a [D, b] (43)

A(2) =
∑

â
[
A(1), b̂

]
, (44)

which satisfies J A(2) J−1 = A(2). At this point we have to distinguish few
possibilities.

5 Pati-Salam Models

In the first possibility we assume that the double commutator

[
a,

[
D, b̂

]]
�= 0, (45)

which implies that A(2) �= 0. The fluctuations A of the inner automorphisms were
computed in [12]. The calculation is straightforward and could be easily done using
symbolic manipulation programs such as Mathematica or Maple. We shall content
ourselves in this paper by collecting some of the important results. Starting with
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a ∈ M4 (C) ⊕ M4 (C) we write

a =
(
Xβ

α δ J
I 0

0 δ
β ′
α′Y J ′

I ′

)
, (46)

where Xβ
α ∈ HR⊕HL and Y J

I ∈ M4 (C) . Thus we now have

Xβ
α =

(
X

.

b
.
a

0
0 Xb

a

)
, Xb

a =
(

X1
1 X2

1

−X
2
1 X

1
1

)
∈ HL , (47)

and similarly for X
.

b
.
a

∈ HR . The anti-linear isometry J = Cγ5 ⊗ JF is represented
by

JF =
(

0 δβ ′
α δ J ′

I

δ
β

α′δ J
I ′ 0

)
× complex conjugation, (48)

and satisfies J 2
F = 1 which implies that J 2 = −1. In this form

â = Ja∗ J−1 =
(

δβ
αY

t J
I 0

0 Xtβ ′
α′ δ J ′

I ′ ′

)
(49)

where the superscript t denotes the transpose matrix. This clearly satisfies the com-
mutation relation [

a, b̂
]

= 0, (50)

which is simply the statement that the right action and left action commute. We shall
now show that the relations that Dmust satisfy greatly constrain its form. The (finite)
Dirac operator can be written in matrix form

DF =
(

DB
A DB

′
A

DB
A′ DB

′

A′

)
, (51)

and must satisfy the properties

γF DF = −DFγF JF DF = DF JF , (52)

where J 2
F = 1. We also adopt the notation D B

A′ = DAB .

A matrix realization of γF and JF is given by

γF =
(
GF 0
0 −GF

)
, GF =

(
12 0
0 −12

)
, JF =

(
04 14
14 04

)
◦ cc. (53)

These relations, together with the hermiticity of D imply the relations
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(DF )B
′

A′ = (
DF

)B
A (DF )BA′ = (

DF
)A′

B , (54)

with the bar denoting complex conjugation.The operator DF have the following zero
components [15]

(DF )bJaI = 0 = (DF )
.

bJ
.
aI (55)

(DF )
.

b
′
J ′

aI = 0 = (DF )b
′ J ′

.
aI , (56)

leaving the components (DF )
.

bJ
aI , (DF )b

′ J ′
aI and (DF )

.

b
′
J ′

.
aI arbitrary. These restrictions

lead to important constraints on the structure of the connection that appears in the
inner fluctuations of the Dirac operator.

We have shown, using elementary algebra, that the components of the connection
A which is tensored with the Clifford gamma matrices γ μ are the gauge fields of
the Pati-Salam model with the symmetry of SU (2)R × SU (2)L × SU (4) . On the
other hand, the non-vanishing components of the connection which is tensored with
the gamma matrix γ5 are given by

(A)
.

bJ
aI ≡ γ5 (�)

.

bJ
aI , (A)b

′ J ′
aI = γ5HaIbJ , (A)

.

b
′
J ′

.
aI ≡ γ5H .

aI
.

bJ , (57)

where HaIbJ = HbJaI and H .
aI

.

bJ = H .

bJ
.
aI , which is the most general Higgs struc-

ture possible. These correspond to the representations with respect to SU (2)R ×
SU (2)L × SU (4) [12]

�
.

bJ
aI = (

2̄R, 2L , 1
) + (

2̄R, 2L , 15
)

(58)

HaIbJ = (1R, 1L , 6) + (1R, 3L , 10) (59)

H .
aI

.

bJ = (1R, 1L , 6) + (3R, 1L , 10) . (60)

We note, however, that the inner fluctuations form a semi-group and if a component

(DF )
.

bJ
aI or (DF )b

′ J ′
aI or (DF )

.

b
′
J ′

.
aI vanish, then the corresponding A field will also

vanish. We distinguish three cases: (1) Left-right symmetric Pati–Salam model with

fundamental Higgs fields�
.

bJ
aI , HaIbJ and H .

aI
.

bJ . In this model the field HaIbJ should
have a zero vev. (2) A Pati-Salam model where the Higgs field HaIbJ that couples
to the left sector is set to zero (and then remain zero under fluctuations) which
is desirable because there is no symmetry between the left and right sectors at low

energies. (3) The initial values for (DF )
.

bJ
aI , (DF )b

′ J ′
aI and (DF )

.

b
′
J ′

.
aI before fluctuations

are given by those that are determined for the Standard Model, where order one

condition is satisfied for the subalgebra, then the Higgs fields �
.

bJ
aI , HaIbJ and H .

aI
.

bJ
will become dependent fields and expressible in terms of more fundamental fields
(as will be shown in the next section).

In matrix form the operator DF has the sub-matrices [15]
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(DF )
β J
α I =

(
0 D

.

bJ
aI

DbJ
.
aI

0

)
, D

.

bJ
aI = (

DbI
.
aJ

)∗
. (61)

Then the components of the Dirac operator tensored with γ μ, including inner fluc-
tuations, is given by [12]

(DA)
.

bJ
.
aI = γ μ

(
Dμδ

.

b
.
aδ

J
I − i

2
gRW

α
μR (σ α)

.

b
.
a δ J

I − δ
.

b
.
a

(
i

2
gVm

μ

(
λm

)J

I + i

2
gVμδ J

I

))

(62)

(DA)
bJ
aI = γ μ

(
Dμδbaδ

J
I − i

2
gLW

α
μL (σ α)

b
a δ J

I − δba

(
i

2
gVm

μ

(
λm

)J

I + i

2
gVμδ J

I

))
,

(63)

where the fifteen 4 × 4 matrices (λm)
J

I are traceless and generate the group SU (4)
and W α

μR, W α
μL , Vm

μ are the gauge fields of SU (2)R , SU (2)L , and SU (4) . The
requirement that A is unimodular implies that

Tr (A) = 0, (64)

which gives the condition
Vμ = 0. (65)

This shows that the resulting gauge group is SU (2)R × SU (2)L × SU (4), which
is the Pati-Salam gauge symmetry. In addition we have for the components of the
Dirac operator tensored with γ5,

(DA)
bJ
.
aI = γ5�

bJ
.
aI (66)

(DA)
.

b
′
J ′

.
aI = γ5H .

aI
.

bJ (67)

(DA)
b′ J ′
aI = γ5HaIbJ , (68)

where �bJ
.
aI

is in the (2R, 2L , 1 + 15) representation, H .
aI

.

bJ = H .

bJ
.
aI is in the

(3R, 1L , 10) + (1R, 1L , 6) representation and HaIbJ is in the (1R, 1L , 6) +
(1R, 3L , 10) with respect to SU (2)R × SU (2)L × SU (4) . To conclude, there are
only three Pati-Salam models with fixed Higgs structure, where the first one is the
most general case, and the other two are special cases of the first one.

6 The Standard Model

We now consider the situation when the order one condition is satisfied
[
a,

[
D, b̂

]]
= 0, (69)
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and the center of the algebra Z (A) is non-trivial in such a way that the space is
connected. Physically, this means that there is a mixing term between the fermions
and their conjugates. TheDirac operator connects the spinorsψA and their conjugates
ψA′ so that

[D, Z (A)] �= 0. (70)

In physical terms this would allow a Majorana mass term for the fermions. It was
shown in [10] that the unique solution to this equation constrains the algebra AF =
HR ⊕ HL ⊕ M4 (C) to be restricted to a subalgebra

C ⊕ HL ⊕ M3 (C) , (71)

so that an element of A takes the form [15]

a =

⎛
⎜⎜⎜⎜⎝

X ⊗ 14
X ⊗ 14

q ⊗ 14
14 ⊗ X

14 ⊗ m

⎞
⎟⎟⎟⎟⎠ , (72)

where X ∈ C, q ∈ H, m ∈ M3 (C) and the operator DF have a singlet non-zero
entry in the mixing term (DF )A

′
A

(DF )
β J
α I =

(
δ1αδ

β
.

1
k∗ν + δ

.

1
αδ

β

1 k
ν + δ2αδ

β
.

2
k∗e + δ

.

2
αδ

β

2 k
e
)

δ1I δ
J
1 (73)

+
(
δ1αδ

β
.

1
k∗u + δ

.

1
αδ

β

1 k
u + δ2αδ

β
.

2
k∗d + δ

.

2
αδ

β

2 k
d
)

δiI δ
J
j δ

j
i

(DF )
β ′K ′
α I = δ

.

1
αδ

β ′
.

1
′ δ

1
I δ

K ′
1′ k∗νRσ, (74)

where kν, ke, ku, kd and kνR are 3 × 3 Yukawa couplings in generation space. The
field σ is a singlet (which could be complex) whose vev is responsible for the right-
handed neutrino Majorana mass. The operator D must be replaced with the operator

DA = D + A + JAJ−1, (75)

and
A(2) = 0, (76)

which greatly simplifies the Higgs structure. The various components of the Dirac
operator are exactly those of the Standard Model, in addition to the Higgs fields
which are the components of the connection A along discrete directions
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(D)

.
11
.
11

= γ μ ⊗ Dμ ⊗ 13, Dμ = ∂μ + 1

4
ωcd

μ (e) γcd , 13 = generations

(D)a1.
11

= γ5 ⊗ k∗ν ⊗ εabHb kν = 3 × 3 neutrino mixing matrix

(D)

.
21
.
21

= γ μ ⊗ (
Dμ + ig1Bμ

) ⊗ 13

(D)a1.
21

= γ5 ⊗ k∗e ⊗ H
a

(D)

.
11
a1 = γ5 ⊗ kν ⊗ εabH

b

(D)

.
21
a1 = γ5 ⊗ ke ⊗ Ha

(D)b1a1 = γ μ ⊗
((

Dμ + i

2
g1Bμ

)
δba − i

2
g2W

α
μ

(
σα

)b
a

)
⊗ 13, σα = Pauli

(D)

.
1 j
.
1i

= γ μ ⊗
((

Dμ − 2i

3
g1Bμ

)
δ
j
i − i

2
g3V

m
μ

(
λm

) j
i

)
⊗ 13, λi = Gell-Mann

(D)
aj
.
1i

= γ5 ⊗ k∗u ⊗ εabHbδ
j
i

(D)

.
2 j
.
2i

= γ μ ⊗
((

Dμ + i

3
g1Bμ

)
δ
j
i − i

2
g3V

m
μ

(
λm

) j
i

)
⊗ 13

(D)
aj
.
2i

= γ5 ⊗ k∗d ⊗ H
a
δ
j
i

(D)
bj
ai = γ μ ⊗

((
Dμ − i

6
g1Bμ

)
δbaδ

j
i − i

2
g2W

α
μ

(
σα

)b
a δ

j
i − i

2
g3V

m
μ

(
λm

) j
i δba

)
⊗ 13

(D)

.
1 j
ai = γ5 ⊗ ku ⊗ εabH

b
δ
j
i

(D)

.
2 j
ai = γ5 ⊗ kd ⊗ Haδ

j
i

(D)

.

1′1′
.
11

= γ5 ⊗ k∗νRσ generate scale MR by σ → MR

(D)

.
11
.

1′1′ = γ5 ⊗ kνRσ

DB′
A′ = D

B
A, DB

A′ = D
B′
A , DB′

A = D
B
A′

where in this notation the fermions are enumerated as

ψ.

11 = νR (77)

ψ.

21 = eR (78)

ψa1 = la =
(

νL
eL

)
(79)

ψ.

1i = ui R (80)

ψ.

2i = di R (81)

ψai = qia =
(
uiL
di L

)
. (82)
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It is clear that the associated gauge group isU (1) × SU (2) × SU (3) and that there
is only one Higgs doublet H. We note the presence of the singlet field σ which is
the field whose vev will give a Majorana mass to the right-handed neutrinos. This
field plays an essential role in stabilizing the Higgs coupling so that it does not turn
negative at very high energies [21].We note in passing that the number of generations
is inserted by hand in the Dirac operator of the finite space, and at present we do not
have any geometrical explanation to single out three generations.

7 A Special Pati-Salam Model

We have shown that inner fluctuations resulting from the action on operators in
Hilbert space form a semi-group Pert(A) . There exists configurations for which the
inverse transformation to the perturbation does not exist. One suchDirac operator DA

corresponds to the case where the initial operator D is taken to be the one deduced
for the Standard Model as given in (73) and (74), but not restricting its action to the
subalgebra C ⊕ HL ⊕ M3 (C) but to the full algebra HR ⊕ HL ⊕ M4 (C) . In this
case one finds out that the resultant vector fields are the same as in the case of Pati-
Salam models, but where the Higgs fields �bJ

.
aI

and H .
aI

.

bJ become composite fields
determined in function of fundamental Higgs fields while HaIbJ vanishes. These are
given by [12]

�bJ
.
aI =

((
kνφb

.
a + keφ̃b

.
a

)
� J

I +
(
kuφb

.
a + kd φ̃b

.
a

) (
δ J
I − � J

I

))
(83)

H .
aI

.

bJ = k∗νR�.
aJ�

.

bI (84)

HaIbJ = 0, (85)

where the Higgs field φb
.
a
is in the

(
2R, 2̄L , 1

)
of the product gauge group SU (2)R ×

SU (2)L × SU (4), φ̃b
.
a

= τ2φ̄
b
.
a
τ2 and �.

a J is in the
(
2R,, 1L , 4

)
representation while

� J
I is in the (1R, 1L , 1 + 15) representation. The fact that one gets a simpler Higgs

representations in this case makes it more attractive. It is certainly an interesting
question to determine all Dirac operators which lead to singular transformations
where the resultant Higgs fields are composites ofmore fundamental ones. The scalar
potential which contains quartic interactions in the bosonic fields, which because of
compositness, are of order 8. All terms of orders higher than four will be suppressed
by the cut-off scale and could be truncated. Similarly the coupling of such terms
to the fermionic fields will be suppressed by the cut-off scale. To conclude this
section, it is remarkable that starting with the simple quantization condition which
represents the Chern-character of the noncommutative space and is a special case of
the orientability condition, fixes uniquely the structure of space-time as well as the
matter content in the form of a very specific Pati-Salam unification model, or three of
its truncations, including the Standard Model. This enables us to track gravitational
and matter interactions, starting from the Planck scale where the starting point is
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few spheres of Planck size, and ending up with the present scale. This compelling
picture could represent a valid framework for the realization of Hilbert’s program
for axiomatization of physics.

8 Spectral Action

The coordinates Y A (x) are topological fields, and apart from being coordinates of a
sphere and satisfying the volume quantization condition, are not constrained. They
do play a role serving as coordinates conjugate to the momentum represented by
the Dirac operator. In particular, since now D and Y play the role of momenta and
coordinates, it is natural to consider the spectral action to be of the form [10]

Tr f (DA,Y ) ,

which, because Y 2 = 1, implies the dependence on terms of the form [D,Y ] . The
lowest order contribution of such terms come from [D,Y ]2 which corresponds to
adding the following term to the action

1

2

∫

M

d4x
√
ggμν∂μY

A∂νY
A. (86)

It is also clear that in the case of the two sided quantization with the field Z the con-
tribution of the term [D, Z ]2 gives the sum of two contributions without interference
terms

1

2

∫

M

d4x
√
ggμν

(
∂μY

A∂νY
A + ∂μY

′A∂νY
′A

)
.

Wehave shown that the spectral action for the part dependent on DA gives the bosonic
action for all dynamical fields appearing in the connection A. In particular, in the
case of the Standard Model the bosonic action for the part independent of the fields
Y A and Y ′A is given by [13–15, 22]

S = 2 f4�
4a0 + 2 f2�

2a2 + f0a4 + · · · (87)

and

Sb = 48

π2
f4�

4
∫
d4x

√
g (88)

− 4

π2
f2�

2
∫
d4x

√
g

(
R + 1

2
aHH + 1

4
cσ 2

)
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+ 1

2π2
f0

∫
d4x

√
g

[
1

30

(−18C2
μνρσ + 11R∗R∗)

+ 5

3
g21B

2
μν + g22

(
W α

μν

)2 + g23
(
Vm

μν

)2

+ 1

6
aRHH + b

(
HH

)2 + a
∣∣∇μHa

∣∣2

+2eHH σ 2 + 1

2
d σ 4 + 1

12
cRσ 2 + 1

2
c
(
∂μσ

)2]

+ · · ·

where a, c, d, e are defined in terms of the Yukawa couplings, f0 = f (0) and fk are
the Mellin transforms of the function f

fk =
∞∫

0

f (v) vk−1dv, k > 0. (89)

This action is calculated using heat kernel methods and was shown to contain unifi-
cation of gravity with gauge symmetries and Higgs field and the scalar singlet. All
couplings are related at unification scale. The zeroth order term in the expansion gives
the cosmological constant, the first order gives the Einstein-Hilbert action and the
scalar masses, and the second order gives the Yang-Mills and scalar kinetic terms as
well as the second order in curvature terms. The presence of the singlet field σ whose
vev gives mass to the right-handed neutrino plays an important role in stabilizing
the Higgs coupling which will not become negative at very high energies as well as
being consistent with a low Higgs mass of 126 Gev [21]. The form of the gauge and
Higgs kinetic terms and potential implies unification of the gauge couplings and the
Higgs coupling. In addition there is a relation between the fermion masses and the
gauge field masses. A study of the RGE showed that these relations are consistent
with present experimental data and predicts the top quark mass to be around 170Gev.
However, gauge coupling unification is off by 4% indicating that the StandardModel
is an excellent approximation to a Pati-Salam model listed above. We have shown
[16] that gauge coupling unification is indeed possible for Pati-Salam models at a
unification scale of the order of 1016 Gev.

It is also worthwhile to summarize the fermionic action

Sf =
∫
d4x

√
g

(
ν∗
Rγ μDμνR (90)

+ e∗
Rγ μ

(
Dμ + ig1Bμ

)
eR

+ la∗
L γ μ

((
Dμ + i

2
g1Bμ

)
δba − i

2
g2W

α
μ (σα)

b
a

)
lbL
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+ ui∗R γ μ

((
Dμ − 2i

3
g1Bμ

)
δ
j
i − i

2
g3V

m
μ

(
λm

) j
i

)
u j R

+ di∗
R γ μ

((
Dμ + i

3
g1Bμ

)
δ
j
i − i

2
g3V

m
μ

(
λm

) j
i

)
d j R

+ qia∗
L γ μ

((
Dμ − i

6
g1Bμ

)
δbaδ

j
i − i

2
g2W

α
μ (σα)

b
a δ

j
i − i

2
g3V

m
μ

(
λm

) j
i δba

)
q jbL

+ ν∗
Rγ5k

∗νεabHbla L + e∗
Rγ5k

∗eHa
la L

+ui∗R γ5k
∗uεabHbδ

j
i q jaL + di∗

R γ5k
∗d Ha

δ
j
i q jaL + ν∗

Rγ5k
∗νRσ

(
ν∗
R

)c + h.c
)

.

Note that the singlet field σ after getting a vev from the minima of its potential, will
give a Majorana mass to the right-handed neutrino and implies that the left handed
neutrino will have a small mass through a see-saw mechanism.

9 Consequences of Volume Quantization

Having established the importance of the volume quantization condition, which in
turn implies that the two sets of fields Y and Y ′ mapping the four dimensional man-
ifold to four spheres must be taken into consideration when studying the dynamical
content of the resulting model. In particular, the Einstein equations of motion will
be modified. The volume constraint, imposed through a Lagrange multiplier, will
result in traceless Einstein equations, with the trace part equated to the Lagrange
multiplier. We will show that Bianchi identities give rise to a cosmological constant
as an integration constant.We now study the implications of the presence of the fields
Y and Y ′ on the structure of the model.

For simplicity and to avoid cluttering of fields and indices, in what follows we
shall consider only one set of fields Y A and not two sets Y A and Y

′A as required by
the reality condition. The effects on the equations of motion will be minimal. Here
we take Y ∈ M2 (H) a 2 × 2 matrix whose elements are quaternions. This can be
written as

Y = Y AA, A = 1, . . . , 5, (91)

where A are Hermitian gamma matrices satisfying
{
A, B

} = 2δAB where Cliff
(+,+,+,+,+) = M2 (H) ⊕ M2 (H) and we take one of the irreducible represen-
tations M2 (H) . The condition Y 2 = 1 implies

Y AY A = 1, (92)

which defines coordinates on the four dimensional sphere S4. We can check that

1

22(4!) 〈Y [D,Y ] [D,Y ] [D,Y ] [D,Y ]〉 = γ, (93)
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implies the relation

det
(
eaμ

) = 1

4!ε
μνκλεABCDEY

A∂μY
B∂νY

C∂κY
D∂λY

E , (94)

which fixes the volume density and whose integral quantizes the volume. This last
condition can be imposed through a Lagrange multiplier. To do this consider the
action

I = − 1

2κ2

∫
d4x

√
gR + 1

2

∫
d4xλ

(
1

κ4
√
g − 1

4! ε
μνκλεABCDEY

A∂μY
B∂νY

C∂κY
D∂λY

E
)

+ 1

2κ4

∫
d4x

√
gλ′ (Y AY A − 1

)
, (95)

where κ2 = 8πG which will be set to 1. Notice that the third term is a four-form
and represents the volume element of a unit four-sphere. It can be written in terms
of differential forms without any tensor indices

− 1

2(4!)
∫

λεABCDEY
AdY B ∧ dYC ∧ dY D ∧ dY E (96)

= − 1

8(4!)
∫

λTr (YdY ∧ dY ∧ dY ∧ dY ) , (97)

and is independent of the variation of the metric. Varying the action with respect to
the metric, after imposing the two Lagrange multipliers constraints

Y AY A = 1 (98)

√
g = 1

4!ε
μνκλεABCDEY

A∂μY
B∂νY

C∂κY
D∂λY

E , (99)

gives

Gμν + 1

2
gμνλ = 0. (100)

Tracing it with gμν then gives

λ = −1

2
G, (101)

which when substituted back yields the traceless Einstein equation

Gμν − 1

4
gμνG = 0. (102)

Applying the Bianchi identity to this equation implies

∂μG = 0 = ∂μλ, (103)
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and thus

λ = −4� (104)

G = 4�, (105)

where � is the cosmological constant arising as an integrating constant [23]. There-
fore we see that an added benefit of having the quantization condition is that the
cosmological constant now appears as an integrating constant in the equations of
motion and is not necessary to be present in the action. This result is similar to the
one encountered in unimodular gravity, with a major difference that in our case the
diffeomorphism symmetry is not restricted but only the volume is quantized with all
symmetries being intact.

Next, varying the fields Y A gives (using ∂μλ = 0 )

− 5

2(4!)λεμνκλεABCDE∂μY
B∂νY

C∂κY
D∂λY

E + λ′YA
√
g = 0. (106)

Tracing this equation with Y A gives

λ′ = 5

2
λ = −5

4
G. (107)

Assuming that G �= 0 (the case G = 0 recovers the full set of Einstein equations
without cosmological constant), we further have

YA = 1

4!
1√
g
εμνκλεABCDE∂μY

B∂νY
C∂κY

D∂λY
E , (108)

which implies the equation

εμνκλεA′BCDE∂μY
B∂νY

C∂κY
D∂λY

E
(
δA′
A − YAY

A′) = 0. (109)

Note that the expression

3

8π2

1

4!
∫
S4
d4xεμνκλεABCDEY

A∂μY
B∂νY

C∂κY
D∂λY

E = π4
(
S4

)
(110)

= Z, (111)

is the winding of the sphere S4 (πn (Sn) = Z [6, 24]). Thus

∫

M

√
gd4x = N

(
8π2

3

)
, (112)
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where N is the winding number of the mapping M4 → S4 [25, 26]. We can easily
see that the Y A equation of motion (108) follows from Eq. (99) and does not give
any new information because it appears through a topological term. To see this use
the identity resulting from anti-symmetrizing six indices taking five values,

0 = Y[A ε A′BCDE]ε
μνκλ∂μY

B∂νY
C∂κY

D∂λY
E (113)

= (YAεA′BCDE − YA′εABCDE − 4YBεAA′CDE ) εμνκλ∂μY
B∂νY

C∂κY
D∂λY

E ,

which, after using the property YB∂μY B = 0 and Eq. (99), implies Eq. (108).

10 Solitonic Solution

We have seen that if we consider the spectral action to be of the form Tr f (D,Y ) ,

it will then contain the kinetic term

1

2

∫

M

d4x
√
ggμν∂μY

A∂νY
A. (114)

Including this term in the action gives the modified Einstein equations

Gμν + 1

2
gμνλ = ∂μY

A∂νY
A − 1

2
gμν (∂Y · ∂Y ) , (115)

where we have denoted by ∂Y · ∂Y = gκλ∂κY A∂λY A. Taking the trace of this equa-
tion determines λ :

λ = −1

2
(G + ∂Y · ∂Y ) , (116)

and when this is plugged back into Eq. (115) it gives two equations, the first of which
is traceless

Gμν − 1

4
gμνG = ∂μY

A∂νY
A − 1

4
gμν (∂Y · ∂Y ) . (117)

Taking covariant derivative of Eq. (115) using Bianchi identity, gives

1

2
∂μλ = ∂μY

A�Y A, (118)

where�Y A = gμν∇μ∂νY A and aftermaking use of the identityY A�Y A = −∂Y · ∂Y
that follows by differentiating Y A∂μY A = 0. We now examine the Y A equation
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− 5

2(4!)λεμνκλεABCDE∂μY
B∂νY

C∂κY
D∂λY

E + λ′YA
√
g

= √
g�Y A + 1

12
εμνκλεABCDE∂μλY B∂νY

C∂κY
D∂λY

E . (119)

Tracing with Y A gives

λ′ = 5

2
λ + Y A�Y A. (120)

Plugging this back and using Eq. (108 ) gives

�Y A − Y A
(
Y B�Y B

) = − 1

12
√
g
εμνκλεABCDE∂μλY B∂νY

C∂κY
D∂λY

E . (121)

The left-hand side of Eq. (118) is a total derivative, while the right-hand side is not.
The general solution of Eqs. (118) and (121) is not easy to find. We shall restrict
ourselves to the subspace where

∂μλ = 0,

so that
G + gμν∂μY

A∂νY
A = 4�.

Equation (121) then simplifies to

�Y A − Y A
(
Y B�Y B

) = 0. (122)

This equation, being traceless, could be recast in terms of the dependent variables
Y a, a = 1, . . . 4, substituting the relation Y 5 = √

1 − Y aY a so that the kinetic term
gμν∂μY A∂νY A takes the form

gμν∂μY
a∂νY

bhab, (123)

where

hab =
(

δab + YaYb
1 − Y cY c

)
. (124)

The Eq. (122) then takes the form [27]

gμν
(∇μ∂νY

a + ∂μY
b∂νY

ca
bc

) = 0, (125)

where a
bc is the Christoffel connection of the metric hab on the sphere S4 which is

given by
a
bc = hbcY

a . (126)
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This shows that the fieldsY a are harmonicmapswhich shows thatmaps from the four-
manifolds M4 to S4 satisfying the equations of motion are harmonic. We conclude
that the equations of motion are identical to those of the O(5) non-linear sigma
model, which is also equivalent to the Projective quaternionic model HP1 [28, 29].
These works have derived the instanton solution (for a conformally flat metric) with
N = 1 and the multi-instanton solution N = n.

First for the N = 1 instanton solution we have

gμν = δμν

1(
1 + x2

)2 , x2 = xaxa, a = 1, . . . , 4 (127)

Y a = 2xa

1 + x2
, Y 5 = x2 − 1

1 + x2
, (128)

which satisfies

Rμν = 1

4
gμνR, R = 48. (129)

The multi-instanton solution is given by

gμν = 2
(
∂μx

n∂νx
n + ∂νx

n∂μx
n
) 1(

1 + xnxn
)2 , (130)

where x is a quaternionic coordinate

x = x41 + ei x
i , (131)

where ei , i = 1, 2, 3 are the three quaternionic complex structures e21 = e22 = e23 =
−1 and e1e2 = −e2e1 = e3. We also have

Y = 2xn(
1 + xnxn

) = Y 41 + eiY i (132)

Y 5 =
(
xnxn − 1

)
(
xnxn + 1

) . (133)

This solution gives a winding number n.

11 Three Dimensional Volume Quantization

Up to this point we have been dealing with compact manifolds. Physical space-time
has a Lorentzian signature, and is thus topologically equivalent to R × M3.

Alternatively, we can envision the following picture. Consider as a starting point
any three dimensional hypersurface �3 whose normals at any point has time-like
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directions and with a family of geodesic lines normal to the hypersurface. Let these
lines be time coordinates and set t to be the distance as measured from the initial
hypersurface. Denote by yi , i = 1, 2, 3 as the coordinates on the hypersurface �.

There will still be arbitrary coordinate transformations xα = xα
(
yi

)
, α = 1, 2, 3.

Denote the four coordinates by xμ = (t, xα) and define the functions [30]

eμ

i = ∂xμ

∂yi
, (134)

and the corresponding normal vectors nμ such that

nμe
μ

i = 0. (135)

The inverse functions eiμ are defined with the aid of the vectors nμ so that

eμ

i e
j
μ = δ

j
i , eμ

i e
i
ν = δμ

ν − nμnν, (136)

where the vectors nμ satisfy
nμn

μ = ε, (137)

where ε = 1 for metric with signature (+,+,+,+) and ε = −1 for signature
(−,+,+,+) . The metric on the four-dimensional manifold generated due to the
motion of the three dimensional hypersurface is then given by

gμν = eiμhi j e
j
ν + εnμnν, (138)

where hi j is the metric on the three dimensional hypersurface �. The inverse metric
is given by

gμν = eμ

i h
i j eν

j + εnμnν, (139)

where hi j is the inverse metric of hi j which implies that

nμ = gμνnν, nμeiμ = 0. (140)

For simplicity we can chose the gauge where

eti = ∂t

∂yi
= 0, (141)

which implies that
nα = 0. (142)

Denoting
nt = N , eit = Ni , (143)
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the components of the metric gμν will be given by

gtt = εN 2 + NαhαβN
β, gtα = Nα, gαβ = hαβ, (144)

where
hαβ = eiαhi j e

j
β, Nα = eiαhi j N

j . (145)

In particular, the vector nμ is given by

nμ =
(
1

N
,−Nα

N

)
. (146)

This gives the familiar 3 + 1 ADM splitting of the metric [31]

ds2 = hαβ (dxα + Nαdt)
(
dxβ + Nβdt

) + εN 2dt2. (147)

At this pointwe note that for the three dimensional hypersurface�3 wewill utilize the
twomapsY andY ′ from� to the three sphere S3,which are definedwith respect to the
Clifford algebras Cliff (+,+,+,+) = M2 (H) and Cliff (−,−,−,−) = M2 (H)

where
Y = Y aa, Y ′ = iY ′a′

a, a = 1, . . . , 4, (148)

where
{a, b} = 2δab,

{
′
a, 

′
b

} = −2δab, (149)

and Y 2 = 1, Y ′2 = 1. In reality, we can consider the mappings from the moving
hypersurfaces �3 which generate the four dimensional manifold and thus we have
Y a (xμ) and Y ′a (xμ) . These could be extended by the field X (xμ) which maps the
geodesics normal to �3 into R. We can then consider the field X to be measure of
the distance

X = √
gμνdxμdxν, (150)

which according to the Hamilton-Jacobi equation will then satisfy [32]

gμν ∂X

∂xμ

∂X

∂xν
= ε, (151)

and this is a requirement that the mapping function X preserves the length of a curve
onM4.This relation could be viewed as a condition tominimize the distance between
two points in noncommutative geometry

[D, X ]2 = −1. (152)

Thus, in contrast to the four dimensional case where the mapping is from M4 to
S4 × S4, the mapping now is from R × �3 to R × S3 × S3. The Feynman slashed
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fields Y 55 and Y ′5′
5 must now be replaced with the field X slashed with some

combination of 1, 5, ′
5 and 5

′
5. To find out the correct procedure, we make the

following observation. In the four-dimensional case, we used the Feynman slashed
coordinates Y = Y AA, A = 1, . . . , 5. The matrices 1

4AB = 1
8 (AB − BA)

are generators of the Lie Algebra SO (5) . Denoting these by JAB , they have the
commutation relations

[JAB, JCD] = − (δAC JBD − δBC JAD − δAD JBC + δBD JAC) . (153)

Denoting A = a, 5 where a = 1, . . . , 4 and Ja5 = RPa we then have

[Pa, Pb] = − 1

R2
Jab. (154)

In the limit R = 1
η

→ ∞, the generators Pa become, locally, the translation genera-
tors and Jab will correspond to SO (4) Lorentz generators. This is the procedure we
will follow to decompose one of the coordinates, say Y 5 by writing

Y 5 = ηX, (155)

and simultaneously rescale one of the coordinates, say x4

x4 → ηt, (156)

then taking the limit η → 0. We will obtain the volume quantization condition by
compactifying the four-dimensional two sided relation to 3 + 1 in the above limit,
where the fields Y 5 and Y ′5 are not coordinates on the fours sphere, but independent
fields. To this end, let

Z = 2EE ′ − 1 (157)

= 1

2

(
Y aa + ηX5 + 1

) (
Y

′aa + ηX′
5 + 1

)
− 1 (158)

= 2ee′ − 1 + ηX
(
5e

′ + ′
5e

) + O
(
η2

)
(159)

= z + ηX
(
5e

′ + ′
5e

) + O
(
η2

)
, (160)

where

e = 1

2

(
Y aa + 1

)
, e′ = 1

2

(
Y ′a′

a + 1
)
, z = 2ee′ − 1. (161)

Notice that we have identified the fields Y 5 and Y ′5 with the same field X because this
is the field corresponding to the motion of the hypersurface. The correct quantization
condition of the 3 + 1 dimensional space, which also results from compactification
of the four dimensional quantization condition is given by
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lim
η→0

1

η

〈(
z + ηX

(
5e

′ + ′
5e

)) (
[D, z] + η

[
D, X

(
5e

′ + ′
5e

)])4〉 = γ, (162)

where γ is the chirality operator of the generated 3 + 1 dimensional manifold. For
consistency, one must first show that all terms of order 1

η
are zero. For example

〈
z [D, z]4

〉 = 0, (163)

as this would involve terms like 〈abcde〉 = 0 because this is the trace of an
odd number of  matrices. Therefor we have to worry only about terms independent
of η as the terms of order η vanish in the limit. Terms which are linear in X (and not
its derivative) also vanish because terms of the form

X
〈(
5e

′ + e′
5

)
[D, z]4

〉
, (164)

will give the terms

Xεμνκλεabcd∂μY
a∂νY

b∂κY
c∂λY

d = X det
∣∣∂μY

a
∣∣ = 0, (165)

as the Jacobian
∣∣∂μY a

∣∣ vanishes because the four Y a are not independent. After some
algebra, one can check that the only non-vanishing terms are

3∑
p=0

〈
z [D, z]p ([D, X ])

(
5e

′ + e′
5

)
[D, z]3−p

〉 = γ. (166)

There is no need to repeat the calculation done in the d = 4 case as the result holds
in general, and in particular in the limit η → 0 and this is a smooth limit as terms of
order 1

η
vanish identically. We thus conclude that this condition implies

1

3!ε
μνκλεabcd∂μX

(
Y a∂νY

b∂κY
c∂λY

d + Y
′a∂νY

′b∂κY
′c∂λY

′d
)

= det
∣∣eaμ

∣∣ . (167)

The field X could be identified with the time coordinate in a certain gauge. For
example, in the synchronous gauge we have gtt = 1, gti = 0 which implies that X =
t is a solution of the above constraint. If we define the three-dimensional hypersurface
�3 by t =constant, then the lapse function N could be defined by ∂t X = N with the
boundary condition

∂i X |� = 0. (168)

We could have obtained the 3 + 1 quantization condition, directly by compactifying
the four-dimensional condition of the mapping from M4 → S4. Let Y 5 = ηX = Y ′5
and simultaneously rescale one of the coordinates, say x4

x4 → ηx0, (169)
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so that the constraint in the limit η → 0, becomes (written covariantly)

√
g = lim

η→0

(
1

4!ε
μνκλεABCDE

(
Y A∂μY

B∂νY
C∂κY

D∂λY
E (170)

+Y ′A∂μY
′B∂νY

′C∂κY
′D∂λY

′E
))

(171)

= 1

3!ε
μνκλεabcd

(
∂μX

) (
Y a∂νY

b∂κY
c∂λY

d + Y
′a∂νY

′b∂κY
′c∂λY

′d
)

, (172)

where the X field is unconstrained, while the fields Y a and Y
′a satisfy

Y aY a = 1, Y
′aY

′a = 1, a = 1, . . . , 4. (173)

Notice that the term

1

4!ε
μνκλX∂μY

a∂νY
b∂κY

c∂λY
dεabcd = XdY 1 ∧ dY 2 ∧ dY 3 ∧ dY 4, (174)

is equal to zero because dY 4 depends on a linear combination of dY 1, . . . , dY 3.

The Clifford algebra M2 (H) ⊕ M2 (H) spanned by Y aa and Y
′a′

a will be
extended by the generators X5 and X′

5. The first M2 (H) corresponding to the
Clifford algebra Cliff(+,+,+,+) is not effected by the addition of 5. The second
M2 (H) corresponding to the Clifford algebra Cliff(−,−,−,−) changes to M4 (C)

when extended by ′
5. Thus the algebra associated with the two sided relation (166)

for the 3 + 1 manifold is the same as the four dimensional case and is given by

M2 (H) ⊕ M4 (C) . (175)

Thus, this compactification corresponds to a mapping fromR × �3 → R×S3 where
�3 is a three dimensional hypersurface. Although imposing this condition could be
made and leads to the mimetic matter phenomena [33, 34], it is worth noting that we
need to impose this condition only on the hypersurface �3 to be defined below:

gμν∂μX∂νX |� = 1. (176)

To get acquainted with this condition, we first consider the situation where we have a
three dimensional hypersurface in space-time, a case dealt with in the ADM decom-
position [31]. Consider the 3 + 1 splitting of space-time so that (for Lorentzian
signature)

ds2 = hi j
(
dxi + Nidt

) (
dx j + N jdt

) − N 2dt2, (177)

where N
(
xi , t

)
and Ni

(
xi , t

)
are the lapse and shift functions. Then

√−g = N
√
h. (178)
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We, therefore, supplement the volume quantization condition

√
g = 1

3!ε
μνκλεabcd∂μX

(
Y a∂νY

b∂κY
c∂λY

d + Y
′a∂νY

′b∂κY
′c∂λY

′d
)

, (179)

by adding the constraints (151) to hold on the hypersurface

∂i X |� = 0, ∂t X |� = N |�, (180)

from which we deduce that the constraint (179), when restricted to the hypersurface
�3, gives

(
N

√
h
)

�
= 1

3!Nεi jkεabcd

(
Y a∂i Y

b∂ j Y
c∂kY

d + Y
′a∂i Y

′b∂ j Y
′c∂kY

′d
)

, (181)

and we finally have

∫

�

√
hd3x = 1

3!
∫

�

εi jkεabcd

(
Y a∂i Y

b∂ j Y
c∂kY

d + Y
′a∂i Y

′b∂ j Y
′c∂kY

′d
)
d3x (182)

= 1

3!
∫

�

εabcd

(
Y adY bdY cdY d + Y

′adY ′bdY
′cdY

′d
)

(183)

= 4

3
π2

(
w + w′) (184)

where w and w′ are integers given by the winding numbers on S3. One can check
that an exact solitonic solution with winding number one, is given by

X = t, Ym = 2xm

1 + xmxm
, Y 4 = xmxm − 1

1 + xmxm
, (185)

with the metric

gtt = 1, gtα = 0, gαβ = δαβ

(1 + xmxm)2
, (186)

and this corresponds to a quantized three dimensional volume.
To understand the condition gμν∂μX∂νX |� = 1 we notice that in the synchronous

gauge [32] we can take X = τ, gtt = 1
N 2 so that

∣∣ ∂τ
∂t

∣∣ = N and thus the line mea-
sure Ndt → N ∂t

∂τ
dτ = dτ which is consistent with gττ = 1. Thus this condition

amounts to length preserving transformation. We deduce that in a Lorentzian space-
time volume quantization is possible, provided that the field corresponding to the
non-compact transformation satisfy a length preserving condition. For the two sided
equation where we have both Y A and Y ′A it is important to truncate both Y 5 and Y ′5
to the same field X



Quanta of Space-Time and Axiomatization of Physics 241

Y 5 = ηX, Y ′5 = ηX,

which avoids imposing further unnatural conditions. There are many advantages to
impose the condition (151) locally as this constraint modifies Einstein gravity only
in the longitudinal sector as the field X is not dynamical. In the synchronous gauge,
this field is identified with the time coordinate and modifies Einstein equations by
giving an energy-momentum tensor in the absence of matter, giving rise to mimetic
coldmatter.We have shown that this field, which arises naturally from the three space
quantization condition can be used to construct realistic cosmological models such
as inflation without the need to introduce additional scalar fields. By including terms
in the action of the form f (�X) which do occur in the spectral action as can be
seen from considerations of the scale invariance, it is possible to avoid singularities
in Friedmann, Kasner [35] or Black hole solutions [36]. This is possible because the
contributions of the field X to the energy-momentum tensor would allow, for special
functions f (�X) to limit the curvature, preventing the singularities from occurring.

12 Area Quantization

Next consider the compactification of two fields, keeping only three compact fields
Ym, m = 1, 2, 3, and rescale the two fields

Y 4 = ηX1, Y 5 = ηX2 (187)

Y ′4 = ηX1, Y
′5 = ηX2, (188)

and simultaneously rescale the coordinates

xα → ηxα, α = 1, 2, (189)

where xα are coordinates along directions transverse to the two dimensional hyper-
surface, so that

√
g = lim

η→0

(
1

4!ε
μνκλεABCDE

(
Y A∂μY

B∂νY
C∂κY

D∂λY
E (190)

+Y
′A∂μY

′B∂νY
′C∂κY

′D∂λY
′E

))
(191)

= 1

2
εμνκλεab∂μX

a∂νX
bεmnp

(
Ym∂κY

n∂λY
p + Y

′m∂κY
′n∂λY

′p
)

, (192)

where Xa (xμ) , a = 1, 2, while the Ym (xμ) and Y ′m (xμ) are subject to the con-
straints

Y pY p = 1, Y ′pY
′ p = 1, p = 1, 2, 3. (193)



242 A. H. Chamseddine

Again, since the functions Xa are unconstrained to be coordinates on a sphere,
normalization conditions must be imposed

det
(
gμν∂μX

a∂νX
b
)
�

= 1. (194)

In case of Minkowski signature we must replace 1 with −1. It is known that this
condition is the area preserving transformation on the two dimensional surface from
the original surface with coordinates xα to the surface with coordinates Xa . We note
that in order to completely characterize this transformation we still have the option
of specifying the trace of the matrix gμν∂μXa∂νXb which turns out to determine the
stability of the map under linear perturbations [37].

Thus this compactification corresponds to the mapping M4 → R
2×S2. We

assume that there is a hypersurface �2 endowed with an induced metric and with
coordinates xi so that the four dimensional metric can be written in the form

ds2 = hi j
(
dxi + hik Niαdx

α
) (
dx j + h jl Nlβdx

β
) + kαβdx

αdxβ, (195)

where hi j is the inverse of hi j , the metric on �2 with i, j = 1, 2 and α, β = 3, 4. In
matrix form, the four-metric is

(
kαβ + NiαN jβhi j Niα

Niα hi j

)
. (196)

The inverse of this metric is given by

(
kαβ −N jα

−N jα hi j + NiαN jβkαβ

)
, (197)

where kαβ is the inverse of kαβ and Niα is obtained from Niα by raising indices with
the metrics hi j and kαβ. The hypersurface �2 is then defined by the equations

xα = const, α = 1, 2, (198)

parametrized by the coordinates xi , i = 3, 4. In this form we have

√
g = √

h
√
k. (199)

The constraint (194) is then solved by

∂i X
a|� = 0, (200)

so that
det

(
kαβ∂αX

a∂βX
b
)
�

= 1, (201)

which implies
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(det k)� = (
det

∣∣∂αX
a
∣∣
�

)2
. (202)

Using

(
εi jεabε

αβ∂αX
a∂βX

bεmnpY
m∂i Y

n∂ j Y
p
)
�

= det
∣∣∂αX

a
∣∣
�

(
εi jεmnpY

m∂i Y
n∂ j Y

p
)
�

(203)

=
(√

kεi jεmnpY
m∂i Y

n∂ j Y
p
)

�
. (204)

The volume constraint becomes

(√
h
√
k
)

�
= 1

2

(√
kεi jεmnp

(
Ym∂i Y

n∂ j Y
p + Y

′m∂i Y
′n∂ j Y

′ p
))

�
. (205)

One important point to realize is that the fundamental constraint equation is (192),
and that we can integrate this equation over any hypersurface we like, and not only
over the full space. In particular, let us choose to integrate over a two dimensional
hypersurface �2 with coordinates xα , then this implies that

∫

�2

d2x
√
h = 1

2

∫

�

εi jεmnp

(
Ym∂i Y

n∂ j Y
p + Y

′m∂i Y
′n∂ j Y

′ p
)
dxidx j (206)

= 1

2

∫

�

εmnp

(
YmdY ndY p + Y

′mdY ′ndY
′ p

)
(207)

= 4π
(
w + w′) , (208)

where w and w′are integers and equal to the winding numbers of the two maps.

13 Equations of Motion for R × S3 and R
2 × S2

13.1 R × S3 Case

Start by taking the action

I = −1

2

∫
d4x

√
gR + 1

2

∫
d4xλ

(√
g − 1

3!ε
μνκλ∂μXεabcdY

a∂νY
b∂κY

c∂λY
d

)

+ 1

2

∫
d4x

√
gλ′ (Y aY a − 1

) + 1

2

∫
d4x

√
gλ

′′ (
gμν∂μX∂νX − 1

)
. (209)

We have included a constraint on the X field, which is known to have the effect of
replacing the scale factor in gravity by the field X which mimics dark matter [33,
34]. We also have the option of not including this field, and in that case the effects of
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the field X will only be topological providing only the joining of the disconnected
pieces. For simplicity, we have included only the coordinates of one of the maps Y a .

First, we have the λ′′ and gμν equations

gμν∂μX∂νX = 1 (210)

Gμν + 1

2
λgμν − λ

′′
∂μX∂νX = 0. (211)

Taking the trace of Einstein equation gives

λ
′′ = G + 2λ, (212)

resulting in the traceless equation

Gμν − G∂μX∂νX + 1

2
λ

(
gμν − 4∂μX∂νX

) = 0. (213)

Next the variation of the field X gives

∂μ

(√
ggμν∂νX (G + 2λ)

) = 1

2
∂μλV μ, (214)

where we have denoted

V μ = 1

3!ε
μνκλεabcdY

a∂νY
b∂κY

c∂λY
d , (215)

and used the property
∂μV

μ = 0. (216)

This last equation is a consequence of the identity dY 1 ∧ dY 2 ∧ dY 3 ∧ dY 4 = 0
which follows from

dY 4 = − 1

Y 4

(
Y 1dY 1 + Y 2dY 2 + Y 3dY 3

)
. (217)

The Y a equation gives

√
gλ′Ya − 1

2
λ∂μX

1

3!ε
μνκλεabcd∂νY

b∂κY
c∂λY

d (218)

= ∂μX∂ν

(
λ
1

3!ε
μνκλεabcdY

b∂κY
c∂λY

d

)
. (219)

Contracting this equation with Y a gives

λ′ = 3

2
λ. (220)
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The Bianchi identity gives

1

2
∂μλ = ∇ν

(
(G + 2λ) ∂μX∂νX

)
. (221)

Using the property
(∇ν∂μX

)
∂νX = 0, obtained by differentiating Eq. (210) this

simplifies to
1

2
∂μλ = 1√

g
∂ρ

(√
ggρν (G + 2λ)

)
∂μX. (222)

For example, in the synchronous gauge where gtt = 1 and X = t, we find ∂iλ = 0
and

∂

∂t

(
G + 3

2
λ

)
+ 1

2

∂

∂t
ln g = 0. (223)

For Friedmann type universe this condition simplifies to

∂

∂t

(
G + 3

·
a

a
+ 3

2
λ

)
= 0, (224)

which is the Einstein equation allowing mimetic dark matter and cosmological con-
stant arising as integration constants.

One can easily verify that the Bianchi identity (221) upon contracting by V μ gives

1

2
∂μλV μ = ∂μXV

μ ∇ν ((G + 2λ) ∂νX) (225)

= ∂μ

(√
ggμν (G + 2λ) ∂νX

)
, (226)

which coincides with the X equation after contracting with V μ.

Note that if the constraint
(
gμν∂μX∂νX

)
�

= 1 is only imposed on the boundary,
then there will be no need for a Lagrange multiplier and the equations do simplify
to give

Gμν − 1

4
gμνG = 0 (227)

G + 2λ = 0 (228)

∂μλ = 0 (229)

λ′ = 3

2
λ. (230)

without any new information from the Y a and X equations.
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13.2 R
2 × S2 Case

We start with the action

I = − 1

2κ2

∫
d4x

√
gR + 1

2

∫
d4xλ

(
1

κ3
√
g − 1

2! ε
μνκλεab∂μXa∂ν X

bεmnpY
m∂κY

n∂λY
p
)

+ 1

2κ4

∫
d4x

√
gλ′ (YmYm − 1

)
. (231)

Varying gμν and setting κ2 = 1, gives

Gμν + 1

2
λgμν = 0, (232)

and by tracing this equation we get

G + 2λ = 0. (233)

After substituting back we get the traceless equation

Gμν − G∂μX∂νX + 1

2
λgμν = 0. (234)

The Bianchi identity gives
1

2
∂μλ = 0.

Next, we have the Xa equation

− ∂μ

(
εμνκλεabλ∂νX

bεmnpY
m∂κY

n∂λY
p
)

= ∂μλεμνκλεab∂νX
bεmnpY

m∂κY
n∂λY

p, (235)

and finally the Ym equation gives

√
gλ′Ym − 1

2
λεab∂μX

a∂νX
b 1

2
εμνκλεmnp∂κY

n∂λY
p (236)

= εab∂μX
a∂νX

b∂κ

(
λ
1

2
εμνκλεmnpY

n∂λY
p

)
. (237)

Contracting this equation with Ym gives

λ′ = 3

2
λ, (238)

and thus



Quanta of Space-Time and Axiomatization of Physics 247

3

2
√
gYm − 3

2
εab∂μX

a∂νX
b 1

2
εμνκλεmnp∂κY

n∂λY
p = 0, (239)

together with
√
g = 1

2!ε
μνκλεab∂μX

a∂νX
bεmnpY

m∂κY
n∂λY

p. (240)

This implies
YmεpqrY

p∂[κ Y
q∂λ]Y

r = εmnp∂[κ Y
n∂λ]Y

p. (241)

This relation is an identity which follows from the vanishing of a rank four antisym-
metric tensor [mpqr ] taking three values

0 = Y[m εpq r ]∂[κ Y
q∂λ]Y

r (242)

= YmεpqrY
p∂[κ Y

q∂λ]Y
r − Ypεmqr∂[κ Y

q∂λ]Y
r + 2YqεpmrY

p∂[κ Y
q∂λ]Y

r ,

(243)

the last term being zero because Yq∂κY q = 0. Thus, as expected, no new information
comes from the Y equation, except for its trace.

The Xa equation reduces to

− ∂μ

(
εμνκλεabλ∂νX

bεmnpY
m∂κY

n∂λY
p
)

= ∂μλεμνκλεab∂νX
bεmnpY

m∂κY
n∂λY

p, (244)

which is identically satisfied since ∂μλ = 0. This shows that the resulting system is
that of gravity plusmimetic darkmatter,with the topological fieldsYm (x) connecting
the different unit spheres, constituting the building fabric of space-time.

Finally we comment on the possibility of adding mimetic matter to the system
corresponding to the quantization ofR

2 × �2 where�2 is a two dimensional surface.
Looking at the induced metric

hab = gμν∂μX
a∂νX

b, a, b = 1, 2, (245)

we notice that we had to impose, on the boundary, the constraint

det hab = 1, (246)

which is the area preserving condition for the two dimensional surfaces. These maps
will be characterized by the value of the trace of hab and their stability will depend
on the value of t = tr hab. These are stable and of the elliptic type when−2 < t < 2.
Unfortunately, the resulting system of equations is not easy to solve, and it is not clear
whether such system can lead to realistic models. It is therefore doubtful whether
using more than one scalar field associated with imposing one or more constraints is
useful. We conclude that for our purposes, it is enough to characterize the conditions
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for area quantization is to have an area preserving conditions on the mapping defined
by the two fields X1 and X2 taken as boundary conditions.

14 Discussion and Conclusions

It is an ambitious goal to initiate a program of axiomatization of physics as suggested
by Hilbert. Our proposal is to start from an analogue of the Heisenberg commutation
relation to quantize the geometry. The Dirac operator plays the role of momentum
while the Feynman slash of scalar fields plays the role of coordinates. When the
dimension of the noncommutative space, as determined by the growth of eigenval-
ues, is 2 or 4 there are two possible Clifford algebras with which the scalar fields are
contracted with the corresponding gamma matrices. These two Clifford algebras are
related to each other through the reality operator J which is an anti-unitary operator
that is part of the data defining the noncommutative space. In four dimensions the
sum of the two Clifford algebras is M2 (H) ⊕ M4 (C) which is the algebra of the
finite space that is tensored with the continuous Riemannian space. The quantization
condition implies that the volume of the continuous part of the space is quantized
in terms of the winding numbers of the two mappings Y and Y ′ from M4 to S4.
The presence of two maps instead of one allows for the representation of a spin-
manifold M4, with arbitrary topology and large volume as the pullback of the two
maps which yields four coordinates given on local charts. This construction deter-
mines, in a unique way, the noncommutative space that defines our space-time. Inner
fluctuations of the Dirac operator by automorphisms of the algebra extends it to
include a connection, which is a one form defined over the noncommutative space.
Components of the connection along the continuous directions are the gauge fields
of the resulting gauge group, and the components along the discrete directions are
the Higgs fields. The connection then includes all the bosonic fields of a unified
field theory, which is a Pati-Salam model with a definite Higgs structure. There are
two special cases when these Higgs fields are either truncated or are in composite
representations of more fundamental fields. The StandardModel with neutrinos (and
a singlet) is a special case of the Pati-Salam model which satisfies an order one con-
dition where the connection becomes restricted to the algebraA but not its opposite.
Elements of the Hilbert space define the fermions which are 16 in the representation
(2, 1, 4) + (1, 2, 4)with respect to the symmetry S (2)R × SU (2)L × SU (3) .Thus
all bosonic fields in the -form of gravity, gauge and Higgs fields are unified in the
Dirac operator and all fermion fields are unified in the fundamental representation in
the Hilbert space. The dynamics is governed by the spectral action principle where
the spectral action is an arbitrary positive function of the Dirac operator valid up to
a cutoff scale, which is taken to be near the Planck scale. In other words, by starting
from a quantization condition on the volume of the noncommutative space, all fields
and their interactions are predicted and given by a Pati-Salam model which has three
special cases one of which is the Standard Model with neutrino masses and a singlet
field. The spectral Standard Model predicts unification of gauge couplings and the
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correct mass for the top quark and is consistent with a low Higgs mass of 125 Gev.
The unification model is assumed to hold at the unification scale and when the gauge,
Yukawa and Higgs couplings relations are taken as initial conditions on the RGE,
one finds complete agreement with experiment, except for the meeting of the gauge
couplings which are off by 4%. This suggests that a Pati-Salam model defines the
physics beyond the Standard Model, and where we have shown [16] that it allows
for unification of gauge couplings, consistent with experimental data.

The assumption of volume quantization has consequences on the structure of
General Relativity. Equations of motion agree with Einstein equations except for the
trace condition, which now determines the Lagrange multiplier enforcing volume
quantization. The cosmological constant, although not included in the action, is now
an integration constant. The two mapping fields Y and Y ′ from the four-manifold to
S4 can be considered to be be solutions of instanton equations and give the physical
picture that coordinates of a point are represented as the localization of instantons
with finite energy. To have a physical picture of time we have also considered a
four-manifold formed with the topology of R × �3, where�3 is a three dimensional
hypersurface, to allow for space-times with Lorentzian signature. The quantization
condition is modified to have two mappings from�3 → S3 and a mapping X : R →
R. The resulting algebra of the noncommutative space is unchanged, and the three
dimensional volume is quantized provided that the mapping field X is constrained
to have unit gradient. This field X modifies only the longitudinal part of the graviton
and plays the role of mimetic dust. It thus solves, without extra cost, the dark matter
problem [33]. Recently, we have shown that this field X can be used to build realistic
cosmological models [34]. In addition, and under certain conditions, could be used to
avoid singularities in General relativity for Friedmann, Kasner [35] and Black hole
solutions [36]. This is possible because this scalar field modifies the longitudinal
sector in GR. We have presented various implications of the quantization condition
such as the absence of the cosmological constant from the action, quantizing volumes
and areas of maps of M4 to S4, R × S3 and R

2 × S2.
We have presented enough evidence that a framework where space-time assumed

to be governed by noncommutative geometry results in a unified picture of all parti-
cles and their interactions. The axioms could be minimized by starting with a volume
quantization condition, which is the Chern character formula of the noncommutative
space and a special case of the orientability condition. This condition determines
uniquely the structure of the noncommutative space. Remarkably, the same structure
was also derived, in slightly less unique way, by classifying all finite noncommuta-
tive spaces [10]. The picture is very compelling, in contrast to other constructions,
such as grand unification, supersymmetry or string theory, where there is no limit
on the number of possible models that could be constructed. The picture, however,
is still incomplete as there are still many unanswered questions and we now list few
of them. Further studies are needed to determine the structure and hierarchy of the
Yukawa couplings, the number of generations, the form of the spectral function and
the physics at unification scale, quantizing the fields appearing in the spectral action
and in particular the gravitational field. To conclude, noncommutative geometry as
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a basis for unification, is a predictive and exciting field with very appealing features
and many promising new directions for research.
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Twistor Theory as an Approach
to Fundamental Physics

Roger Penrose

Abstract The original motivations underlying the introduction of twistor theory
are described, demanding a (3+1)-dimensional space-time theory dependent upon
complex analysis and geometry. Space-time points are relegated to a secondary role,
light rays, with a twisting aspect to them, being taken as more fundamental. The
twistor treatment of wavefunctions for massless fields leads to a representation in
terms of holomorphic sheaf cohomology. This, in turn, leads to a description of
anti-self-dual (left-handed) gravitational (and Yang-mills) feeds. Failed attempts to
remove this anti-self-dual restriction (the googly problem) led to a 40-year blockage
to the development of twistor theory as a possible overall approach to fundamental
physics. In recent years, a hopeful approach to deal with this problem—palatial
twistor theory—has arisen, but the detailed development of these ideas has so far
proved technically difficult.

1 Underlying Motivations

1.1 Twistor Aspirations

Twistor theory is a body of unusual ideas, initiated in 1963, that was intended even-
tually to provide a coherent overall approach to fundamental physics [1]. Despite
various successes over the years, in which it provided significant inputs into certain
areas of pure mathematics, most particularly differential geometry, representation
theory and integrable systems (see, in particular, [2, 3]), twistor theory had, for
many years, practically no impact at all on the theoretical physics community itself.
This remained true for some four decades until around 2005, when (following cer-
tain earlier publications of others [4–11]), Witten [12] introduced several novel ideas
that then stimulated further work, e.g. [13–20], which allowed twistor methods to
help in powerfully simplifying the calculations of scattering amplitudes at very high
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energies (where all particles involved could be considered to be massless). Nonethe-
less, as a candidate for an overarching general theory of physics, the proposal
remained vastly short of its original aims.

In my view there has been one key obstruction to progress towards this overall
objective, which is connected with the chiral nature of the formalism. One sees this
most strikingly in the way that the curved space-times of general relativity began to
be addressed by the theory, whereas the original scheme was restricted to describing
special-relativistic physics of flat Minkowskian space-time. From 1975 (see [21,
22]), by means of what became known as the “non-linear graviton construction”, it
became possible to use twistor theory to generate general (complex) curved-space
solutions of the Einstein vacuum equations (with or without a cosmological constant
�), but only for “gravitons” of left-handed helicity. To describe the right-handed
ones using the same formalism, and to combine the two in a satisfactory way, was
fundamentally elusive, and this became known as the “googly problem” (a term
borrowed from the game of cricket). Although, for around 40years, no satisfactory
solution to this conundrumwas found, it is my opinion that a relatively new approach
to this issue, referred to as “palatial twistor theory” may well hold the key [23, 24],
and this scheme will be outlined here in §C7 and §C8. However, genuine progress
in adopting these ideas in an effective way has not yet been achieved.

1.2 Space-Time Dimensionality: Two Roles
for the Riemann Sphere

As for twistor theory’s actual origins, that effectively occurred in early December
1963, when I was on a 9-month appointment at the University of Texas. Various
motivational ideas had been troubling me for a number of years previously, concern-
ing what I had felt to be a need for a novel approach to foundational physics, and
these had then largely come together in my mind at that time. This was the initial
stage of the proposal that, a little later, I indeed referred to as “twistor theory”, owing
to a key role that the twisted configuration of interlocking circles shown in Fig. 1 (a
stereographically projected family of the Clifford parallels on a 3-sphere) had played
for me. I shall come to the role of this configuration in §B1).

One of my main motivations had arisen from my feeling that there was a need for
a formalism that was geared to that specific dimensionality of space-time structure
that we directly perceive around us. This line of thinking was very unlike that of
various other ideas for an underlying physics of the world that later became popular,
e.g. string theory [25]. I had earlier become convinced that what was needed would
be a formalism that should indeed be very specific to the number of space and time
dimensions, namely 3 and 1, respectively, that macroscopically present themselves
to us, and I took the view that this should be central to the scheme. This goes very
much in opposition to the role of space-time dimensionality underlying many of the
current trends, most particularly string theory, where extra space dimensions (and
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Fig. 1 A picture representing a non-null twistor: stereographic projection of Clifford parallels
on a 3-sphere to Euclidean 3-space E . The tangent directions to the circles point in the direction
(projected into E) of the rays of a Robinson congruence. By continuingly reassembling itself the
entire configuration travels with the speed of light, as E evolves in time, in the direction of the large
arrow at the top right

even an extra timedimension, in the case of “F-theory”) are put forward [25] as serious
proposals for the overall space-time geometry of the physical world that we inhabit. It
also goes against the very natural and commendable desire, in puremathematics, for
formalisms that can be applied, generally, to any spatial dimensionality whatever, but
the aims of theoretical physics are very different from those of puremathematics, even
though much of theoretical physics depends vitally on the latter.

Another of my basic motivations had been for a formalism that was essentially
complex in the sense that it would be able to take advantage of what I had regarded,
ever since my days as a mathematics undergraduate, as the “magic” of complex
analysis and holomorphic (i.e. complex analytic) geometry. I had learnt that the
complex number system had not only a profoundly deep power and elegance, but
that it had also found a basic realization in its underlying role in the formalism of
quantum theory.When I had begun to study quantummechanics in a serious way, and
particularly following the superb course of lectures given by Paul Dirac when I was
a graduate student (in algebraic geometry) at Cambridge, I became fascinated by the
quantum description of spin, and how the complex numbers of quantum mechanics
were directly related to the 3-dimensiality of physical space, via the 2-sphere of
spatial directions being appropriately identified as a Riemann (or Bloch) sphere of
the ratios of pairs of complex numbers (quantum amplitudes) where, in the case of
a massive particle of spin 1/2 such as an electron (see Fig. 2), we can think of these
as being the complex components of a 2-spinor. Moreover, I had realized that in the
relativistic context, there was another role for the Riemann sphere, this time as the
celestial sphere that an astronaut in space would observe. The transformation of this
celestial sphere to that of a second astronaut, moving at a relativistic speed while
passing nearby the first would be one that preserves the complex structure of the
Riemann sphere (i.e. conformal without reflection). The special (i.e. non-reflective)
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Fig. 2 The Riemann sphere (here in its role as a Bloch sphere) projects stereographically from its
south pole S to the complex (Wessel) plane, whose unit circle coincides with the equator of the
sphere. A general spin state | ↗〉 = w| ↑〉 + z| ↓〉, of a spin-1/2 massive particle is represented by
the pint Z on the Wessel plane denoting the complex number u = z/w, which is the stereographic
image of Z′ on the sphere (so S, Z, and Z′ are collinear). The spin direction ↗ is then OZ, where
O is the sphere’s center

Lorentz group is thus seen to be identical with these holomorphic transformations
of this Riemann sphere (Mobius transformations). Again this was clear from the
2-spinor formalism, this time in the relativistic context (see [26]).

1.3 The 2-Spinor Formalism

This dual role for the Riemann sphere, one fundamentally to do with quantum
mechanics in the case of 3 spatial dimensions, and the other fundamentally to do
with macroscopic relativity, in (3+1)-dimensional space-time, struck me as being
no accident, but something that linked together these two great revolutions of 20th
century physics—of the small and of the large—via the magic of complex numbers.
I felt that this might represent a definite clue to a deep unifying relation between the
two. Both could be seen as a feature of the 2-spinor calculus, as introduced be Cartan
[27] and van der Waerden [28], and which I had learnt how to use [29] from Dirac,
in an unusual deviation from his normal Cambridge course on quantum mechanics.

I liked to think of a 2-spinor (often referred to by physicists as a “Weyl spinor”)
in a very geometrical way, and I realized that, up to an overall sign, a non-zero
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Fig. 3 a The space of null directions at some space-time point O is represented as a Riemann
2-sphere S. The flagpole direction of a 2-spinor is represented, on S, as the point P. Infinitesimally

near to P is P′, where the direction
−−→
PP ′ provides the 2-spinor’s flag plane. b In space-time terms,

the 2-spnor’s flagpole is shown as the null 4-vector
−→
OF , where we realize S as a particular 3-plane

intersection of the future null cone of O (all this taken in O’s tangent 4-space), so that P lies on the
line OF. The 2-spinor’s flag plane is now seen as the null half-2-plane extending away from the line
OF in the direction of P′

2-spinor can be represented as a future-pointing null vector (a vector pointing along
the future null cone), referred to as the “flagpole”, together with a “flag plane”
direction through that flagpole [30, 31]. The flag plane would be a null half-plane
bounded by the flagpole. This flag geometry can be thought of in the following way.
Imagine the Riemann sphere S of null (i.e. lightlike) directions at some point O in
space-time. (See Fig. 3.) We are thinking of the geometry in the tangent 4-space of
the point O. The flagpole direction is represented by some point P on a sphere of
cross-section of the future null cone of O, which we identify with S, and we choose
a point P′ on S infinitesimally separated from P. The straight line extended out from
P in the direction of P′, when joined to O, defines the required flag half-plane. We
note that as the point P′ rotates about P, the flag plane rotates about the flagpole. The
spinor itself is defined only up to sign by this geometry, but we must take note that
if P′ rotates continuously around P through 2π , the spinor becomes replaced by its
negative. To reach the original 2-spinor by this procedure, the rotation of the flag
plane would have to be through 4π .

I had found that 2-spinor methods were surprisingly valuable in giving us insights
into the formalism of general relativity that were different from those that the stan-
dard Lorentzian tensor framework readily provides. Most immediately striking was
the very simple-looking 2-spinor expression forWeyl’s conformal curvature [29] (see
also [32]). Whereas the usual Weyl-tensor quantity Cabcd , has a somewhat compli-
cated collection of symmetry and trace-free conditions, the corresponding 2-spinor
is simply a totally symmetric complex 2-spinor quantity ΨABCD .

Somecomments concerning the 2-spinor indexnotation being used here are appro-
priate. Capital italic Latin index letters A, B,C, . . . refer to the (2-complex dimen-
sional) spin space if they are upper indices, and to the dual of this space if lower
ones; primed such letters A′, B ′,C ′, . . . refer to the complex-conjugate spin space.
The tensor product of the spin space with its complex conjugate is identified with
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the (complexified) tangent space to the space-time, at each of its points. In general, I
shall take these as abstract indices, in the sense described in my book withWolfgang
Rindler, Spinors and Space-Time, volume 1 [31], so that no coordinate system is
implied, either for the space-time or for a basis for the spin-space. This is notation-
ally very handy, because the space-time indices a, b, c, . . . can then be thought of as
“shorthand” for the spinor index pairs:

a = AA′, b = BB ′, c = CC ′, . . .

The spin-space (and hence also its dual and complex conjugate) has a symplectic
structure defined by the skew-symmetric quantities

εAB, εAB, εA′B ′ , εA′B ′
,

these being used for lowering or raising indices, (where we must be a little careful
about signs and index orderings):

κB = κ AεAB, κ A = κBεAB, ηB ′ = ηA′
εA′B ′ , ηA′ = ηB ′εA′B ′

so that on terms of components,

κ1 = κ0, κ0 = −κ1, η1′ = η0′
, η0′ = −η1′

,

where the component form of each of the epsilons is

(
0 1

−1 0

)
.

The metric tensor, in abstract-index form is

gab = εABεA′B ′ ,

and the abstract-index form of the Weyl conformal curvature tensor is

Cabcd = ΨABCDεA′B ′εC ′D′ + εABεCDΨ̃A′B ′C ′D′ .

Here, I have allowed for the case of a complex metric gab, both ΨABCD and Ψ̃A′B ′C ′D′

being totally symmetric, where ΨABCD describes the anti-self-dual (left-handed)
Weyl curvature and �̃A′B ′C ′D , the self-dual (right-handed) part. In the case of a real
Lorenzian space-time metric (ε̄AB = εAB) and �̃A′B ′C ′D′ is the complex conjugate
of ΨABCD:

Ψ̃A′B ′C ′D′ = Ψ A′B ′C ′D′ ,

but it will be important for what follows that we consider the complex case also,
as we shall be concerned with self-dual (complex vacuum) space-times, for which
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ΨABCD = 0 and anti-self-dual ones, for which Ψ̃A′B ′C ′D = 0, later (these complex
fields being regarded as wavefunctions).

1.4 Zero Rest-Mass Fields

We find that in the case of a (real Lorentzian) vacuum metric (with or without
cosmological constant), the Bianchi identities become

∇ AA′
ΨABCD = 0

which may be compared with the Maxwell equations in charge-free space-time

∇ AA′
ϕAB = 0,

where ϕAB relates to a (complex)Maxwell field tensor Fab in the sameway asΨABCD

relates to Cabcd , namely

Fab = ϕABεA′B ′ + εAB ϕ̃A′B ′ ,

where ϕAB describes the anti-self-dual (left-handed) part of the field and ϕ̃A′B ′ , the
right-handed (self-dual) part. For a real Maxwell field, they are complex conjugates
of each other:

ϕ̃A′B ′ = ϕA′B ′ .

I had become interested in the issue of finding solutions of the general equation

∇ AA′
φABc....E = o

in (conformally) flat space-time, φABc....E being symmetric in its n spinor indices,
the equation being the (conformally invariant) free-field equation for a massless
field of spin n/2 [33–35]. This equation (together with the wave equation in suitably
conformally invariant form) had a particular importance for me, and I believed it
to have a rather basic status in relativistic physics. For I had come to the view that
nature might have a “massless’ structure at its roots, mass itself being a secondary
phenomenon. In around 1961 (see [36]) I had found a formula for obtaining the
solution of this field equation from general data freely specified on a null initial
hypersurface. I had formed the view that this formula had a certain kinship with the
Cauchy integral formula for obtaining the value of a holomorphic function at some
point of the complex plane in terms of the function’s values along a closed contour
surrounding that point. I had felt that, in some sense, thismassless field equationmight
be akin to the Cauchy-Riemann equations. There had to be an unusual “complex”
way of looking at Minkowski space, I had surmised, in which the massless field
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equations were simply a statement of holomorphicity—but in what sense could this
be true?

There was one remaining feature that I felt sure must be represented, as part of this
mysterious “complex”way of looking at space-tine. This arose from a discussion that
I had had with Engelbert Schücking when I shared an office with him in the spring
of 1961 at Syracuse University in New York State. Engelbert had persuaded me of
the key importance to quantum field theory of the splitting of field amplitudes into
positive and negative frequency parts. I was not happy with the standard procedure
of first resolving these amplitudes into Fourier components and then selecting the
positive ones, as not only did this strike me as too “top-heavy”, but also the Fourier
analysis is not conformally invariant—and I had come to believe that this conformal
invariance, being a feature of massless fields, was important (again, something that
had been stressed to me by Engelbert).

I had become aware that for complex functions defined on a line (thought of as the
time line) we may understand their splitting into positive- and negative-frequency
parts in the following way. We view this time line as being the equator of real
numbers in a Riemann sphere which, as before, is the complex plane compactified
by the single point labelled by “∞”, but where the sphere is now being oriented
somewhat differently from that of Fig. 2, with the real numbers now featuring as
the equator (increasing as we proceed in an anti-clockwise sense un the horizontal
plane), rather than the unit circle. Functions defied on this equatorial circle which
extend holomorphically into the southern hemisphere (with usual conventions) are
the functions of positive frequency, and those which extend holomorphically into the
northern hemisphere are those of negative frequency. An arbitrary complex function
defined on this circle can be split into a function extending globally into the southern
hemisphere and one globally into the northern hemisphere—uniquely except for an
ambiguity with regard to the constant part—and this provides us with the required
positive/negative frequency split, without any resort to Fourier analysis. I wanted
to extend this picture into something more global, with regard to space-time, and
I had in mind that my sought-for “complex” way of looking at Minkowski space
should exhibit something strongly analogous to this division into two halves, where
the boundary between the two could be interpreted in “real” terms, in some direct
way. This had then set the stage for the emergence of twistor theory!

2 The Emergence of Twistor Theory

2.1 Robinson Congruences

A colleague of mine, Ivor Robinson, who had taken up a position at what later
became the University of Texas at Dallas, had been working on finding global non-
singular null solutions of Maxwell’s free-field equations in Minkowski space-time
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M, where “null” in this contextmeans that the invariants of the field tensor Fab vanish,
i.e. FabFab = 0 = ∗ FabFab where ∗Fab is the Hodge dual of Fab. Equivalently, in
2-spinor terms, ϕABϕAB = 0, which tells us that

ϕAB = κ Aκ B,

for some κ A. It is not hard to show that the Maxwell equations then imply that the
flagpole direction of κ A points along a 3-parrameter family—a congruence—of null
straight lines, which turn out to be what is called “shear-free”, which means that
although the lines may diverge, converge, or rotate, locally, there is no shear (or
distortion) as we follow along the lines.

Although, not relevant to the discussion at the moment, it is worth noting that
the study of shear-free congruences of rays in curved space-times has a considerable
historical significance—where I use the term “ray” simply to mean a null (i.e. light-
like) geodesic in space-time. In particular, the well-known Kerr solution [37, 38] of
the Einstein vacuum equations for a rotating black hole possesses a shear-free ray
congruence, and this played a key role in its discovery, as it did also in Newman’s
generalization to an electrically charged black hole [39], and also in the Robinson-
Trautman gravitationally radiating exact solutions [40], among other examples. As
in the case of Minkowski space M, as described above, it is also true that for any null
solution ϕAB of Maxwell’s equations in curved space-times, the flagpole directions
of the κ A-spinors point along a shear-free family of rays.

A simple example of a shear-free null congruence inM is obtained from any fixed
choice of a ray L in M, where the family of all rays that meet L provides a shear-
free ray congruence. I refer to such a congruence as aspecial Robinson congruence,
and this includes the limiting case when L is taken out to infinity, so our congru-
ence becomes a family of parallel rays in M. Ivor Robinson had developed ways of
producing null solutions of the Maxwell equations, starting from any given shear-
free null congruence, but when applied to the special congruences just described, he
found that singularities would arise along the line L itself (except in the otherwise
unsatisfactory case where L is a is at infinity). Desiring a singularity-free solution,
he provided the following ingenious trick. Consider, instead, solutions of Maxwell’s
equations in the complexified Minkowski space-time CM, and displace the line L
in a complex direction, so that it lies in CM, but entirely outside its real part M.
Complex analytic solutions of Maxwell’s equations, based on the complex “special
Robinson congruence” defined by the displaced L need not now be singular within
M, and the flagpoles of the κ A-spinors within M now point along an entirely non-
singular sear-free ray congruence in M, which I later named a (general) Robinson
congruence.

I became highly intrigued by the geometry of general Robinson congruences,
and I soon realized that one could describe them in the following way. Consider an
arbitrary spacelike 3-plane E in Minkowski 4-space M. E will have the geometry of
ordinary Euclidean 3-space, and each ray of the congruence will meet E in a single
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point, at whichwe can determine the location of that raywithinM by specifying a unit
3-vector n at that point, pointing in the spatial direction that is the orthogonal projec-
tion into E of the null direction of L there. Thus we have a vector field of ns within
E to represent the Robinson congruence. After some thought I realized what the
nature of this vector field must be. The n-vectors are tangents to the oriented circles
(together with one oriented straight line) obtained by stereographic projection of a
family of Clifford parallels on a 3-sphere. See Fig. 1 for a picture of this configura-
tion, and Ref. [41] for a detailed derivation. The large arrow at the top right indicates
the direction in which the configuration appears to move with the speed of light by
continually reassembling itself in that direction, as E evolves into the future.

By examining this configuration, and counting the number of degrees of freedom
that such configurations have, I realized that the space of Robinson congruencesmust
be 6-dimensional. Moreover, it was reasonably clear to me that by its very mode of
construction, this space ought to have a complex structure, and so must be, in a
natural way, a complex 3-manifold. Within this space would lie the space of special
Robinson congruences, each of which would be determined by a single ray (namely
L). The space of rays in M is 5-real-dimensional, and it divides the space of general
Robinson congruences into two halves, namely those with a right-handed twist and
thosewith a left-handed twist. The complex 3-space of Robinson congruences, which
came to be known as “projective twistor space” appeared to be just what I believed
was needed, where the “real” part of the space (representing light rays in M, or their
limits at infinity) would, like the “real” equator of the Riemann sphere described at
the end of §A4, divide the entire space into two halves. This, indeed appeared to be
exactly the kind of thing that I was looking for!

2.2 Twistors in Terms of 2-Spinors

To be more explicit about things, and to understand precisely how the space of
Robinson congruences does provide a compact complex 3-manifold divided in two
by the real 5-spaceof specialRobinson congruences, let us turn again to the relativistic
2-spinor formalism of §A3. We shall see how this allows us to provide a very neat
description of individual rays in M and how this generalizes to describe general
Robinson congruences. Consider some ray Z in M, and let us assign a strength to
this ray in the form of a null 4-momentum covector pa pointing along Z at each of
its points, parallel-propagated along Z. In fact, let us go a little further than this by
assigning a (dual, conjugate) 2-spinor πA′ parallel-propagated along Z, where

pa = π̄AπA′

so that in addition to πA′’s flagpole pointing along Z , it also assigns a flag plane (and
spinor sign) to Z which is parallel-propagated along it. This will be referred to as a
spinor scaling for the ray Z .
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We need to choose a space-time origin point O within M, so that any point X of
M can be labelled by a position vector xa at O. Then if X is any point on the ray Z ,
we can define a 2-spinor ωA by the equation,

ωA = i x AA
′
πA′

and we find that ωA remains unchanged if X is replaced by any other point on the
ray Z. The pair (ωA, πA′), serve to identify the ray Z , together with a spinor scaling
for Z .

The 2-spinors ωA and πA′ are the spinor parts (with respect to the origin O) of the
twistor Zα , which represents the spinor-scaled ray Z , and often one simply writes

Zα = (ωA, πA′).

However, for a ray, there is a particular equation that must hold between the spinor
parts, namely

ωAπ̄A + πA′ + ω̄A′ = 0

which follows from the fact that the vector xa is real, so that x AB ′
has the Hermitian

property x AB ′ = x BA′
. The above equation can be rewritten as

Zα Z̄α = 0.

where Z̄α the complex conjugate of Zα

Z̄α = (π̄A, ω̄
A′

),

(and note the reverse order of the spinor parts) is a dual twistor. When Zα Z̄α = 0,
we refer to Zα as a null twistor, so it is that the null twistors represent (spinor-scaled)
rays in M—or rays at M’s infinity.

The above equation
ωA = ix AA′

πA′

is referred to as the incidence relation between the space-time point X and the twistor
Zα = (ωA, πA′). We may also be interested in this incidence relation when X is
allowed to be a complex point. Likewise, for a dual twistor

Wα = (λA, μ
A′

),

incidence with a (possibly complex) point X is expressed as

μA′ = −ix AA′
λA.
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2.3 Minkowski Space Compactified, Complexified, and
Twistor Spaces

At this juncture It would be helpful to clarify the nature of “infinity”, with regard
to Minkowski space M. We recall that when a ray L is characterized in terms of the
null congruence of rays that intersect L, we were led to consider the ray congruences
that consist entirely of parallel rays, arising when L is moved out to infinity. There
is a whole 2-sphwere’s-worth of such systems of parallel rays one for each null
direction. Thus the family of limiting rays L at infinity constitutes a kind of “light
cone at infinity”. Indeed, this provides us with the picture of compactified Minkowski
space M

# (with topology S1 × S3), as illustrated in Fig. 4, where Fig. 4a shows how
a future and past null boundary regions can be supplied for Minkowski space, while
Fig. 4b shows how these twoboundaries are to be identified so as to produce the highly
symmetrical compact Lorentzian-conformal manifold M

#. Every ray within M
# is

compactified by a single point to become a topological circle. The global symmetry
group of M

# is what it referred to as the 15-parameter conformal symmetry group
of flat space-time.

Now let us consider how to represent a non-null twistor Zα in a geometrical way,
it is best to think in terms of the family of null twistors Y α that are orthogonal to Zα

in the sense that
ZαȲα = 0

(or, equivalently Y α Z̄α = 0). If Zα were a null twistor—where Y α is given as a null
twistor—these respectively representing rays Z and Y, then this vanishing of their

i+

i 0

i –

a +

a –

identify

+

–

i+

i–

i0

+

–

(a) (b)

Fig. 4 a A conformal picture indicating how Minkowski space-time M acquires its future null
boundary I+, a null 3-surface supplying future end-points to rays in M and, similarly, a past null
boundary I− supplying past end-points to rays in M. There are also three other conformal boundary
points i+, i−, and i0 denoting future, past, and spacelike infinity, respectively. b To complete the
picture of compactified Minkowski space M

#, we must identify I+, with I−, so that the future
end-point a+ of any ray in M is identified with its past end-point a−. Also the three points i+, i−,
and i0 must be identified
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scalar product asserts that these rays intersect (perhaps at infinity). Accordingly, if Z
is fixed, then this condition on Y tells us that the Y belongs to the special Robinson
congruence defined by the ray Z. Now, let Z be a fixed non-null twistor (but where
Y remains null). Then the congruence of Y-rays subject to orthogonality with Z will
provide a general Robinson congruence. See [41] for details.

The space T of all twistors Zα is a 4-dimensional complex vector space, with
pseudo-Hermitian scalar product (ZαȲα) of split signature (+ + − −). Geometrical
notions are often best expressed in terms of the projective twistor spacePT of twistors
up to proportionality, this being a complex projective 3-space CP

3. This compact
complex manifold PT—or, more strictly, in accordance with the above discussion,
the CP

3 of dual projective twistors PT*—can indeed be identified with the space of
Robinson congruences referred to above. The dual twistor spaceT * is identifiedwith
the complex conjugate space T̄ of T via this pseudo-Hermitian structure. The points
of the dual projective space PT* represent the complex projective planes within PT.
The complex projective lines within PT correspond to points of the complexified
compactified Minkowski space CM

#.
Whereas, generally speaking, it is the projective twistor space PT that is useful

to us if we are thinking of geometrical matters, the space T is appropriate if we are
concerned with the algebra of twistors. For a non-zero twistor Zα , we can have three
algebraic alternatives. These are:

Zα Z̄α > 0, for a positive or right-handed twistor Zα, belonging to the spaceT
+,

Zα Z̄α < 0, for a negative or right-handed twistor Zα, belonging to the space T
−,

Zα Z̄α = 0, for a null twistor Zα, belonging to the space N.

The entire twistor space T is the disjoint union of the three parts T
+, T

−, and N, as
is its projective version PT the disjoint union of the three parts PT

+, PT
−, and PN

(see Fig. 5).

Z

Fig. 5 Theway that the various parts of twistor spaceT relate to their various projective counterparts
of PT. Each point of PT represents a 1-dimenional vector subspace of T
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2.4 Helicity and Relativistic Angular Momentum

It is the space PN that has the most direct physical interpretation, since its points
correspond to world-lines of free classical massless particles, which we can think
of as the classical histories of (pointlike) photons in free motion, though possibly at
infinity, as a limiting case inMinkowski space-timeM; see Fig. 6. As indicated above,
points of complexifiedMinkowski spaceCM (that are not at infinity) are represented
as (complex projective) lines in PT, but so also are all the points of the complexified
compactifiedMinkowski space CM

#. Those lines that lie in PN , represent points of
the real space-time M (possibly at infinity), but since these lines are still complex
projective lines, they are indeed Riemann spheres, in accordance with the ambitions
put forward in §A2; see Fig. 6.

In Fig. 7 this picture is extended to include a physical interpretation of non-null
twistors, where points of PT

+ and PT
− are represented, in Minkowski space, as

though they are light rays with a twist about them. This is schematic, but indeed these
points can be regarded as representing massless particles with spin. In relativistic
physics, if a massless particle has a non-zero spin, the “spin-axis” must be directed
parallel or anti-parallel to the particle’s velocity.We say that the particle has a helicity
s, that can be positive or negative (or zero, for a spinless massless particle). If s �= 0,
then the particle’s space-time trajectory is not precisely defined (in a relativistically
invariant way) as a world-line, but can be specified in terms of its 4-momentum pa
and 6-angular momentum Mab about some chosen space-time origin pointO. These
must be subject to

pa p
a = 0, p0 > 0, M (ab) = 0, 1

2εabcd p
bMcd = spa

(curved or square brackets around indices respectively denoting symmetric or
anti-symmetric parts), where εabcd = ε[abcd] is the Levi-Civita tensor fixed by its

x

Z
Z

X

Riemann sphere

light ray

Fig. 6 The most immediate part of the twistor correspondence: a ray Z in Minkowski space
M corresponds to a point in PN ; a point x of M corresponds to a Riemann sphere X in PN
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Fig. 7 Classical massless
particles with positive
(right-handed) helicity can
be represented as points of
PT

+ and those with negative
(left-handed) helicity, as
points of PT

−

+ he
lic

ity

– h
eli

cit
ynu
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component value ε0123 = 1 in a right-handed orthonormal Minkowskian frame (with
time-axis basis vector δa0 so p0 is the particle’s energy, in units where the speed of
light c = 1). Note that 1

2εabcdM
cd =∗ Mab is the Hodge dual of Mab. The connection

between these quantities and twistor theory is that if

Zα = (ωA, πA′)

then we can make the interpretation

pAA′ = πA′ π̄A, MAA′BB ′ = iω(Aπ̄B)εA′B ′ − iω̄(A′π B′
)εAB,

and all the above conditions are automatically satisfied, provided that πA′ �= 0. Con-
versely, the twistor Zα (withπA′ �= 0) is determined, uniquely up to a phasemultiplier
eiθ , by pa and Mab, subject to these conditions. The helicity s finds the very simple
(and fundamental) expression

2s = ωAπ̄A + π̄A′ ω̄A′

= Zα Z̄α.

There is, however, the subtlety referred to above that in this interpretation of a
non-null twistor, when the helicity s is non-zero, there is no actual world-line that can
describe the particle’s location in a relativistically invariant way. This is an important
undercurrent to the application of twistor ideas in general relativity as discussed in
C7 and C8.

2.5 Description Under Shift of Origin

Under a displacement of the origin O to a new point Q of M ,

O �→ Q,
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where the position vector
−→
OQ is (in abstract-index form) qa , the spinor parts of the

twistor Zα = (ωA, πA′) undergo

ωA �→ ωA − iq AA′
πA′ , πA′ �→A′ .

For a dual twistor Wα = (λA, μ
A′

), we correspondingly have

λA �→ λA, μA′ �→ μA′ + iq AA′
λA.

This turns out to be consistent with the standard transformation of Mab (and pa)
under origin change, where the position vector xa of a space-time point X corre-
spondingly undergoes

xa �→ xa − qa .

There is a connection between the above direct physical interpretation of a twistor
in terms of angular momentum—particularly a non-null twistor Zα—and the Robin-
son congruence defined by Zα . This congruence is provided by the family of rays
defined by the null (dual) twistors Wα satisfying

ZαWα = 0.

To see the connection with singular momentum, let us examine this relation at an
arbitrary point Q of M , where we now take Q as our origin point. We are interested
in the rayW of the congruence which passes through Q. With respect to Q, as origin,
Wα then takes the form

Wα = (λA, 0)

(μA′
being zero, since Wα is now incident with the origin point Q; see §B2), so that

the relation ZαWα = 0 now becomes

ωAλA = 0,

at the point Q. This tells us that the flagpole direction of ωA is the same as that
of λA, namely the direction of the ray W. Tus, the angular momentum Mab of the
spinning massless particle determined by Zα has a structure that is characterized by
the flagpole directions of its two spinor parts with respect to Q. We may refer back
to Fig. 1, to see the curious spatial geometry of all this, where the flagpole directions
of ωA twist around in this complicated (Robinson congruence) way, while that of
πA simply points in the direction of motion of the configuration. It may perhaps be
mentioned, that the choice of letters “π” and “ω” come from the normal usage of
“p” for momentum, and “omega” for angular momentum.
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3 Fields, Quantization and Curved Space-Time

3.1 Twistor Quantization Rules

Up to this point, we have been considering twistor theory only in relation to classical
physics in flat space-time geometry. Quantum twistor theory—and, indeed, as we
shall be seeing later, space-time curvature, involves considering twistors (and dual
twistors) as non-commuting operators, satisfying certain commutation laws:

Zα Z̄β − Z̄β Z
α = �δα

β

and, as far as our current considerations go,

ZαZβ − Zβ Zα = 0, Z̄α Z̄β − Z̄β Z̄α = 0

[41, 42]. Now the twistors are taken to be linear operators generating a non-
commutative algebra A whose elements are taken to be acting on an appropriate
quantum “ket-space” |. . .〉 of some kind [43], but it is best not to be specific about
this, just now. We could alternatively think of our operators as dual twistors, subject
to the commutation laws

WαW̄
β − W̄ βWα = −�δα

β

and
WαWβ − WβWα = 0, W̄ αW̄β − W̄βW̄α = 0,

which is the same thing as before, but with Z̄α re-labelled as Wα .
These commutation laws are almost implied by the standard quantum commuta-

tors for 4-position and 4-momentum

pax
b − xb pa = i�δba

but there appears to be an additional input related to the issue of helicity. By direct
calculation, we may verify that the twistor commutation laws reproduce exactly the
(more complicated-looking) standard commutation laws for pa and Mab that arise
from their roles as translation and Lorentz-rotation generators of the Poincaré group
(see [41]). In this calculation, there is no factor-ordering ambiguity in the expressions
for pa and Mab in terms of the spinor parts of Zα and Z̄α (owing to the symmetry
brackets). Yet, the calculation for the helicity s (writing the operator as s) yields:

s = 1

4
(Zα Z̄α + Z̄αZ

α).
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3.2 Twistor Wavefunctions

In accordance with standard quantum-mechanical procedures, in order to express
wavefunctions for massless particles in twistor terms, we need functions of Zα that
are “independent of Z̄ ′′

β . This means “annihilated by ∂/∂ Z̄β” i.e. holomorphic in Zα

(Cauchy–Riemann equations). Thus, a twistor wavefunction (in the Zα-description)
is holomorphic in Zα and the operators representing Zα and Z̄α act:

Zα � Zα×, Z̄α � −�
∂

∂Zα
,

Alternatively, we could be thinking of functions of Z̄α that are “independent of
Zβ”, i.e. anti-holomorphic in Zα . Here it would be better to re-name Z̄α as Wα

and consider functions holomorphic in Wα . Accordingly, in the dual twistor Wα-
description, a wavefunction must be holomorphic in Wα and we have the operators
representing W̄ α and Wα , again satisfying the required commutation relations, but
now with:

W̄ α � �
∂

∂Wα

, Wα � Wα × .

If we are asking that our wavefunction describe a (massless) particle of definite
helicity, then we need to put it into an eigenstate of the helicity operator s, which,
by the above, is

s = −1

2
�(Zα ∂

∂Zα
+ 2)

in the Zα-description, and

s = 1

2
�(Wα

∂

∂Wα

+ 2)

in the Wα-description. These are simply displaced Euler homogeneity operators

ϒ = Zα ∂

∂Zα
or ϒ̃ = Wα

∂

∂Wα

,

so a helicity eigenstate, with eigenvalue s, in the Zα-description requires a holomor-
phic twistor wavefunction f (Zα) that is homogeneous of degree

n = −2s − 2,

where I henceforth adopt� = 1.Then2s is an integer (odd for a fermion and even for a
boson). In theWα-description, the dual twistor wavefunction f̃ (Wα) is homogeneous
of degree ñ where

ñ = 2s − 2.
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3.3 Twistor Generation of Massless Fields and Wavefunctions

In ordinary space-time terms, the position-space wavefunction of a massless particle
of helicity 2s [33–35] satisfies a field equation, this being expressible in the 2-spinor
form

∇ AA′
ψAB...E = 0,�ψ = 0, or ∇ AA′

ψ̃A′B ′...E ′ = 0,

for the integer 2s satisfying s < 0, s = 0, or s > 0, respectively, these equations
having been already considered in §A4, but where the scalar case s = 0 is now
included also, involving the D’Alembertian

� = ∇a∇a .

We have total symmetry for each of the |2s|-index quantities

ψAB...E = ψ(AB...E) and ψ̃A′B ′...E ′ = ψ̃A′B ′...E ′).

What is the connection between the holomorphic twistor wavefunction f (Zα), or
dual twistor wavefunction f̃ (Wα), with these space-time equations? In most direct
terms this is given (for suitable numerical constants k, k ′) by contour integrals [42,
44, 45]1:

ψAB...E (x) = k
∮

ω=ix·π
∂

∂ωA

∂

∂ωB
. . .

∂

∂ωE
f (ω,π)δπ , if s ≤ 0;

ψ̃A′B ′...E ′(x) = k ′
∮

ω=ix·π
πA′πB ′ . . .πE ′ f (ω,π)δπ , if s ≥ 0.

Here AB. . .E or A′B ′. . .E ′ are |2s| in number, and the 1-form δπ is

δπ = εF ′G ′
πF ′dπG ′ ,

and where k and k’ are suitable constants. I have taken the liberty of writing xa, ωA,
and πA′ without their abstract indices in places here, and using bold-face upright
type instead. The contour, for these integrals, lies within the Riemann sphere, in
PT, of twistors Zα = (ωA, πA′) satisfying the incidence relation ωA = i x AA′

πA′

(written ω = ix · π , below the integral sign), which removes the ωA-dependence
and introduces xa-dependence, and then the contour integration itself removes the

1The upper one of these two integral expressions was put forward by Lane Hughston, as a comple-
ment to the lower one, which I had found earlier. The significance of having both of these was not
recognized, initially, but it was later realized that both are needed for the complete picture.
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X

Fig. 8 The geometry relevant to the twistor contour integral for a wavefunction. The regions Q1
and Q2 of the text are the respective complements, within PT

+, of the depicted regions V2 and V1.
Here, the open sets V1, V2 provide a 2-set open covering of PT

+ and R is their intersection

πA′-dependence, leaving us with just xa-dependence. See Fig. 8, where “X” is
the Riemann sphere representing the (complex) point labelled xa . Satisfaction of
the field equations is an immediate consequence of these holomorphic expressions.
The 2-form dπ0′ ∧ dπ ′

1 = 1
2dδπ is sometimes more appropriate to use, rather than

δπ , the contour then being 2-dimensional, lying in T rather than PT. In the dual
twistor description, we have corresponding expressions.

3.4 Singularity Structure for Twistor Wavefunctions

For such expressions to provide non-zero answers, the function f must have appropri-
ate singularities. The situation of specific interest to us here is the case of a wavefunc-
tion for a freemassless particle, although these formulae can also be used undermany
other circumstances, such as for real solutions of Maxwell’s equations in particular
domains. Real solutions can clearly be obtained from the complex ones described
here, by taking the real part, the equations to be satisfied being linear. Completely
general solutions of the equations are obtained in this way provided that they are
analytic. In fact, precursors of these equations were found long ago, for the Laplace
equation byWhittaker [46] in 1903, and for the wave equation (in 1904) by Bateman
[47] who later generalized it for the Maxwell equations in the 1930s, see [48].

For a wavefunction, we require complex solutions of positive frequency, and here
iswhere the important earlymotivation for twistor theory referred to at the end of §A4
was finally satisfied. To start with, this was only in a way that seemed somewhat odd.
But eventually this apparent oddness was re-interpreted as something remarkably
“natural” when properly understood, with potentially deep implications.

Let us see how this works. First, we take note of the fact that the family of
points of CM that constitute the sub-region CM

+ known as the “forward tube”—
namely the family of points of CMwith position vectors whose imaginary parts are
past-pointing timelike—corresponds to the family of lines that lie entirely in PT

+.
A complex function ψ , defined on M , which extends smoothly to a holomorphic
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function throughout CM
+ is indeed of positive frequency and conversely, positive

frequency being a key requirement for a wavefunction [49]. Thus, for our twistor
wavefunction f , we require “regularity” of an appropriate sort throughout the region
PT

+. Yet it would be far too restrictive to demand holomorphicity for f over the
whole of PT

+ and, in any case, such a function would simply give the answer zero
when contour integrated. What we seem to need is a function with two separated
regions of singularity on each Riemann sphere (complex projective line) that corre-
sponds to a point in CM

+, i.e. to a projective line in PT
+, since then we could obtain

a non-trivial answer to the contour integration, the contour being a closed loop on
the Riemann sphere that separates the two regions of singularity on the sphere. The
situation is depicted on the right-hand side of Fig. 8. This is achieved if the singu-
larities of f are constrained to lie in two disjoint regions Q1 and Q2 (each closed
in PT

+ so our contour integrations can take place within the holomorphic region R

between them (Fig. 8). Our twistor wavefunction f is thus taken to be holomorphic
throughout the (open) region

R = PT
+ − (Q1 ∪ Q2).

This, indeed, appears to be a somewhat odd requirement for the twistor description
of such a fundamental thing as a massless particle’s wavefunction. Moreover, the
region R is very far from being invariant under the holomorphic motions of PT

+,
some of these representing the non-reflective Poincaré (inhomogeneous Lorentz)
motions ofMinkowski spaceM . Any particular choice of the regionR clearly cannot
take precedence over any other such choice obtained from the original one by such a
motion, so there is clearlymuch non-uniqueness involved in the choices ofR and f in
this description. This difficulty looms large if we try to add two twistorwavefunctions
which might have incompatible singularity structures. Linearity is, after all a central
feature of quantum mechanics as we currently understand that subject, so how are
we to deal with this problem?

3.5 Čech Cohomology

The resolution of these puzzling features, leads us to an understanding of what kind
of an entity a twistor wavefunction actually “is”. This lies in the notion of Čech
sheaf cohomology. It is not appropriate that we go into much detail, here, but some
indication of the issues involved will be of importance for us. What we find is that
the twistor wavefunction f is not really to be viewed as being “just a function” in
the ordinary sense, but as representing an element of “1st cohomology” (actually 1st
sheaf cohomology). I shall call such an entity a 1-function. An ordinary function, in
this terminology, would be a 0-function. There are also higher-order entities referred
to as 2-functions, 3-functions, etc., but we shall not need to consider these here.

An important aspect of 1-functions (or of n-functions, where n > 0) is that they
are non-local entities in an essential way (a feature of twistor theory which appears
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to reflect aspects of non-locality that occur in quantum mechanics). A good intuitive
way of appreciating the idea of a 1-function is to contemplate the “impossible tribar”
depicted in Fig. 9. Here we have a picture that for each local region, there is an
interpretation provided, of a 3-dimensional structure that is unambiguous, except
for an uncertainty as to its distance from the viewer’s eye. As we follow around
the triangular shape, our interpretation remains consistent (though with this mild-
seeming ambiguity) until we return to our starting point, only to find that it has
actually become inconsistent! The element of 1st cohomology that is expressed by
the picture is a measure of this global inconsistency [50].

Howmightwe assign such ameasure to the degree of this impossibility? I shall not
go into full details here, but the idea is to regard the object under consideration—here
the tribar—as being built up from a number of regions (open sets) which together
cover thewhole object, butwhich are “locally trivial” in some appropriate topological
(or differential) sense. In the case of the tribar, we might have a local picture of each
vertex, say V1, V2, V3, where the three pictures overlap pairwise in smaller open
regions Vi ∩ V j , somewhere along each relevant arm of the tribar, so that taken
together they provide a picture of the entire tribar. On each overlap region Vi ∩ V j ,
we require some numerical measure Fi j which describes the ratio of the displacement
from the eye that needs to be made for the pictures to be considered to match, and
since we need an additive measure we take Fi j to be te logarithm of this ratio, and
accordingly the Fi j are anti-symmetric (Fji = –Fi j ). The triple (F12, F23, F31), taken
modulo the particular triples of the form (H1–H2,H2–H3,H3–H1) where Hi refers
to the freedom in the interpretation of the particular vertex picture Vi provides. The
resulting algebraic notion gives us the required cohomology element, describing the

Fig. 9 An impossible “tribar”, as an illustration of the notion of (1st) cohomology. There is an
unambiguous interpretation of each local part, except for an ambiguity as to the distance from the
viewer’s eye, but globally this ambiguity leads to a non-local inconsistency. The measure of this
inconsistency is an element of 1st cohomology. Twistor wavefunctions exhibit a similar feature,
where the rigidity of analytic continuation replaces the rigidity of a material body
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degree of impossibility in the figure. This notion is what I am calling a 1-function.
For further issues see [3].

This is just to give a little flavor of what sort of an entity a 1-function actu-
ally is. More specifically, in the context of twistor theory, we are concerned with
complex spaces and holomorphic functions on them. Thus, in the case of a twistor
wavefunction there is the important subtlety, in that the global “impossibility” arises
from the “rigidity” of holomorphic functions rather than that of the solid structures
conjured up by the local parts of Fig. 9. But let us be a bit more general here, and
imagine some complex manifold K. We shall need a locally finite open covering
C = (V1,V2,V3, . . .), ofK. To define a 1-function f , with respect to C, we assign a
holomorphic function fi j on each non-empty pairwise intersection:

fi j = − f ji is holomorphic onVi ∩ V j ,

and on each non-empty triple intersection:

fi j + f jk + fki = 0 on Vi ∩ V j ∩ Vk,

where the collection { fi j } is taken modulo corresponding collections of the form
{hi − h j }, where each

hi is holomorphic onVi ,

so that two 1-functions are considered to be equal if the difference between their
{ fi j } representations is of the form {hi − h j }. This defines a 1-function with respect
to the particular covering C. For the full definition, we would have to take the direct
limit for finer and finer coverings. Fortunately, in the case of complex manifolds,
as is being considered here, we are assured that provided that the sets Vi are of
suitable type (e.g. Stein spaces; see [51]) then we gain nothing from taking such a
limit, and the 1-function concept is already with us. Nevertheless, in order to add
two 1-functions defined by different coverings, we do need to take their common
refinement in order to perform this operation, which can be a little complicated in
practice.

In the case of main interest here, namely K = PT
+, it will be adequate for our

immediate purposes here simply to take a 2-set covering of PT
+ , namely C =

{V1,V2}, with open sets given by the complements, within PT
+ of the respective

singularity regions Q2 and Q1. Then we have our required covering C (not actually
with Stein spaces, but that is not of importance here)

PT
+ = V1 ∪ V2, R = V1 ∩ V2;

(see Fig. 8), just as we had earlier. The family { fi j } consists of the single twistor
function f , which, by an abuse of notation I may identify with the 1-function it
determines.
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In the cases of homogeneity 0 or 2 (left-handed electromagnetism or left-
handed linearized gravity, respectively), there are generalizations of the twistor-
space contour-integral expressions that allow one to view the 1-function nature of
a twistor function in a different light, in which non-linearities of general relativity
and particle physics begin to play a significant role. To appreciate this, let us return
to thegeneral Čech descriptions given earlier, where a locally finite open covering
C = (V1,V2,V3, . . .) of a complex space K was considered. In the specification of
a 1-function f , in relation to this covering, we required a family of holomorphic
functions { fi j } defined on the non-empty overlaps Vi ∩ V j . Here, the functions are
entirely passive, being just “painted on” the space K. However, we can consider a
somewhat more active role for such a 1-function f , such as (a) specifying the gen-
eration fa bundle aboveK, or (b) using f to specify the generation of a deformation
ofK itself. In each case, the rules (see [51]) defining a 1-function are exactly what is
needed to fulfil this purpose. However, in each case, this specification by a 1-function
would only be as an infinitesimal generator of the bundle or deformed space [except
for an Abelian group in case (a)] because of non-linearities. Nevertheless, the gen-
eral idea expressed in (a) and (b) still holds true; it is just that the linear nature of a
1-function ceases to hold. In effect, we have a kind of “non-linear 1-function”.

It was in 1977 that Richard Ward introduced the procedure indicated in case (a)
above, first in the situation provided by the (left-handed) Maxwell equations, which
allowed interactions of the field with charged particles to be considered. Almost
immediately afterwards he showed how this procedure could be generalized to the
(left-handed) Yang-Mills equations [52]. This turned out to have considerable impor-
tance in the theory of integrable systems (see, for example, [2, 3]). Shortly before
all this, in 1976, procedure (b) had been introduced [21], to provide a twistorial
representation of all conformally complex-Riemannian 4-manifolds which ae anti-
self-dual (i.e. Ψ̃A′B ′C ′D′ = 0; see end of §A3). When an additional simple condition
is imposed, this provides not only a (complex) metric but automatically generates
the general anti-self-dual solution of the Einstein vacuum equations, either without
[21] or with a cosmological constant � [22].

3.6 Infinity Twistors and Einstein’s Equations

It is a fairly straight-forward procedure to generate the desired deformed twistor
spaces satisfying the required conditions ensuring satisfaction of the Einstein
�-vacuum equations. Basically, what is required is to match appropriate portions
on (non-projective) twistor space, while preserving the Euler operator

Υ = Zα ∂

∂Zα
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and the 2-form

Θ = IαβdZ
α ∧ dZβ

where the anti-symmetrical infinity twistor Iαβ (and its dual I αβ) are given by

Iαβ =
(

�
6 εAB 0
0 εA′B ′

)
, I αβ =

(
εAB 0
0 �

6 εA′B ′

)
.

We see that I αβ and Iαβ are both complex conjugates and duals of one another:

Iαβ = I αβ, I αβ = Iαβ,

Iαβ = 1
2εαβρσ I ρσ , I αβ = 1

2ε
αβρσ Iρσ ,

where εαβρσ and εαβρσ are Levi–Civita twistors, fixed by their anti-symmetry and
ε0123 = 1 = ε0123 in standard twistor coordinates. The preservation of Υ and Θ on
the overlaps where Vi as matched to V j , is ensured, if we shift infinitesimally along
the vector field

I αβ ∂ fi j
∂Zα

∂

∂Zβ
,

where each fi j has homogeneity degree 2 (i.e. Υ fi j = 2 fi j , which corresponds to
helicity –2). We can imagine exponentiating these infinitesimal deformations to a
finite one. In the case of a 2-set covering, we can achieve this explicitly by expo-
nentiating the single function f12, but with larger numbers of sets, we can encounter
difficulties in satisfying the required condition on triple overlaps. A simpler proce-
dure for satisfying the required condition of preservingΥ andΘI is to use generating
functions, see [21].

It is, however, not at all a direct matter to obtain the (complex) curved space-time
M from the deformed twistor space T, according to this construction. The points
of M correspond to “lines” in PT, that are completed Riemann spheres, stretching
across from one patch to the other, or perhaps others, if the covering involves more
than two patches. These Riemann spheres are not easy to locate, in a general way,
since they are determined by the global requirement that they be compact holomor-
phic curves withinPT of spherical topology (and belonging to the correct topological
family). The very existence of these “lines”, as I shall call them (provided that the
deformation from PT

+, or some other part of PT, is not too drastic), together with
the fact that they belong to a 4-parameter family, depends upon key theorems by
Kodaira and Kodaira-Spencer (see [53, 54]). The space representing these lines is
the required complex 4-manifoldMC. Its complex conformal structure comes about
from the simple fact that meeting lines in PT correspond to null separated points in
M, and the definition of its metric scaling comes about through use of the form Θ .
With this complexmetric, the complex4-manifold automatically satisfies theEinstein
�-vacuum equations, and the construction provides the general anti-self-dual
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solution. This procedure has become known as the “non-linear graviton construction”
[21],2 [22]. It has found numerous applications in differential geometry [2, 3].

At this point, it is worth emphasizing an essential but unusual feature of the non-
linear graviton construction. This is that the “curvature” in the deformed twistor
space is not local, in the sense that a small-enough neighbourhood of a point in the
deformed space is identical in structure to that of ordinary flat twistor space (for
given �). The “curvature” in the deformed space is a non-local feature of the space
PT, but in the construction of the “space-time” manifoldMC, we consequently find
genuine local curvature in the normal sense (Riemann curvature, Weyl curvature).

As a general approach to physics, however, there has been a fundamental obstruc-
tion to progress for some four decades, namely what has become known as the
“googly problem”, referred to briefly in A1. The problem is that, by the very nature
of the construction. The points of PT have an interpretation within MC as what are
called “α-surfaces” (totally null self-dual complex 2-surfaces) [21], and there would
have to be a 1-complex-parameter family of such surfaces through each point of
MC (corresponding to the 1-parameter family of points on each line of PT) and
this would imply Ψ̃A′B ′C ′D′ = 0, i.e. MC being conformally anti-self-dual. Clearly,
if twistor theory is to have any hope of providing a basis for fundamental physics,
there needs to be a way around this “googly problem” (see A1). Many ideas for
addressing this issue have been made over the years, often resorting to examining
the twistor structure at infinity, where the geometry is simpler than that at finite
regions (see, for example, [57]), but none has been able to achieve much. The most
successful approach has been that of ambitwistors [58, 59], complex null geodesics,
modelled on twistor, dual twistor pairs (Zα,Wβ), subject to ZαWα = 0. This enables
complex-Riemannian 4-manifolds to be studied in relation to twistor-type ideas, and
the Einstein vacuum equations to be examined in this light. But it does not follow the
twistor route of “non-linearizing” the 1-function description of quantum wavefunc-
tions, where left- and right-handed helicities can be combined together to describe
gravitational interactions.

3.7 The Ideas of Palatial Twistor Theory

It is fortunate, therefore, that there is a novel approach to generalizing the non-
linear graviton construction, so that both helicities can be accommodated within
the same general framework, and that classical conformal space-times should also
come under the same umbrella. To understand the basic idea, let us first return to
the procedure that we considered earlier, in the non-linear graviton construction,
where to produce a suitably deformed twistor space, we “glue together” pieces of
complex manifold, preserving the complex structure from patch to patch. The notion

2The historical pointmust bemade here that a key input to the development of the non-linear graviton
construction was the introduction, in 1976, by Ezra T. Newman, of his notion of the H-space, for
an asymptotically flat space-time, as described initially in [55]; for more detail, see [56].



Twistor Theory as an Approach to Fundamental Physics 279

of “complex structure” can be encapsulated in terms of the algebra of holomorphic
functions on each patch—or, technically, the “sheaf” of such functions, where we
require holomorphicity throughout each small neighbourhood of every point. Now,
we saw from the above that the basic conundrum was the existence of the actual
points in each patch, since it was the interpretation of the points in PT that gave
rise to the unwanted α-surfaces. Thus, it would seem, we somehow need to find a
way of matching the sheaves of algebras of holomorphic functions from one patch
to another, without actually having “patches” that consist of individual points! This
will not do, however, because the algebras already “know” the points, so long as the
algebras are, like the algebra of holomorphic functions, commutative.

This suggests that we take, instead, a holomorphic algebra that is non-
commutative.3 As we have seen in §C1, there is a natural non-commutative algebra
in twistor theory, namely that generated (via complex linear combinations and prod-
ucts, i.e. repeated basic operations, and the taking of appropriate limits) from the
operators (see C2):

Zα × and − ∂

∂Zα
.

I shall refer to this algebra as A the basic quantum twistor algebra for Minkowski
space M. The idea is that, in some sense, we have two (or more) “sub-regions”, anal-
ogous to the V1 and V2 of the non-linear graviton construction that, in an appropriate
sense “cover” the entire region of interest, which is, ultimately, to represent some
open portion of the complex(ified) space-time MC.

The essential idea is that the algebra A can be thought of as a system of complex
linear operators acting on holomorphic functions defined locally on some complex
space which, initially, we think of as twistor spaceT. In Dirac’s quantum-mechanical
terminology [43],T is a “ket” space for the algebraA of quantum operators.We are to
think ofA as an abstract algebra that is not dependent upon this particular realization.
For example, the same A could also be thought of as the space of complex linear
operators acting on holomorphic functions on the dual twistor space T

∗, where the
respective operators above would (as displayed in §C2) now be

∂

∂Wα

and Wα ×

which satisfy the same commutation rules as before. Thus, in Dirac’s terminology,
T

∗ would be an alternative ket space for A. Another way of basically saying this
would be to assert that the complex parameters Z0, Z1, Z2, Z3 constitute a complete
set of commuting operators for the algebra A, and so also doW0,W1,W2,W3, where
the elements of a complete set of commuting operators would all have to commute
with one another, and that, in the space that they all coordinatize, they and their
partial derivatives generate the whole of A. The general idea would be to patch

3I am very grateful to Michael Atiyah for making me aware of this important requirement, in a
conversation in 2013.
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together various different “ket patches”, by analogy with the patching together of
different open regions in a locally finite covering C = (V1,V2,V3, . . .), in order to
build up a non-trivial complex manifold. In some sense, the algebras have to “agree”
on overlaps, but the algebraA that we end up with, would differ fromA, but agreeing
with it in some local sense.

There are various issues that need to be faced,with regard to this sort of “patching”.
We might, for example consider some sub-region X of twistor space T, which we
propose to use of as a ket-space “patch”. The operator exp(Aα∂/∂Zα), for constant
Aα , could be a bit of a dangerous entity, as a candidate for membership of the
algebra whose ket space is indeed to be X. A problematic issue could be that a
holomorphic function f , defined on X, whose analytic continuation from inside X
to a point displaced by the vector Aα to a somewhere outside X where this analytic
continuation of f becomes singularwould exclude exp(Aα∂/∂Zα) frommembership
of the algebra, since its action on f would be singular.On the other hand, the operation
of multiplication by exp(AαWα), on a ket space that is any sub-region of T

∗ would
be completely harmless. Such issues need to be better understood fur a properly
rigorous picture of this intended procedure.

It is clear from all this that there is a considerable vagueness in this proposal, as
put forward above. Most particularly, we do not have a clear notion of topological
issues, such as “local” and “open set”, when it comes to these algebras. These difficult
issues are not properly resolved as things stand, but I think that a helpful approach
is to imagine that we are staying close to the region that would be PN, in flat-space
twistor theory. This is the spacewhose points represent light rays inMinkowski space,
and this notion clearly carries over to a general (let’ us say globally hyperbolic [60])
space-timeM. The 5-manifoldPN of rays (null geodesics) inMwill beHausdorff, by
virtue ofM’s global hyperbolicity [60]. By providing also a spinor scaling (see §B2)
to each ray (taken to be parallel-propagated along the ray), we can unambiguously
define the smooth Hausdorff 7-manifold N.

We now have the ordinary notions of locality and open coverings, as applied to
PN and this extends toN, by virtue of the spinor scaling, as described in §B2. Thus,
we can imagine that PN has a locally finite open covering (PN1, PN2, . . .), and a
corresponding locally finite open covering (N1,N2, . . .) ofN − {0}. The idea is that
if the individual spaces Nk , together with their intersections, are, in an appropriate
sense, “simple”, then they can be (non-canonically) assigned respective flat twistor
quantum algebras A1, A2. . ., where “flat” refers to being some kind of “subalgebra”
of A in some appropriate notional sense, where we must bear in mind the comments
made two paragraphs above. On the various overlapped regionsN j ∪ Nk the algebras
Ai and A j need to be patched together in the same kind of appropriate sense, but the
resulting “totally patched” algebra A for the whole space should not be “flat” in its
total structure if M is conformally curved. Moreover, it would be intended that the
conformal structure of M would be completely encoded within the algebra A.

At least, that is the general idea, but there are numerous issues that remain unre-
solved, as of now.Nevertheless, there are some possibleways that onemight proceed.
Since we are considering the situation “close toN”, we might well work in terms of a
“power series in Zα Z̄α”, which ‘in the quantized version wouldmean a “power series
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in Υ = Zα∂/∂Zα”. This raises some intriguing issues currently under investigation.
As a positive comment, In relation to all this, it may be remarked that it is perfectly
legitimate for the “intersections” of the algebras ANi and AN j to relate to the actual
pointwise intersections Ni ∩ N j of the regions Ni and N j , since there is no issue of
“α-surfaces” arising here. However, it is clear that much further work needed to be
done in order that this proposal can become well defined.

3.8 Local Twistors and the Einstein Equations

There is a significant feature of twistor theory that appears to be necessary to incor-
porate into the discussion of §C7, especially if Einstein’s equations are to be incorpo-
rated in an appropriateway. This is the notion of a local twistor and the accompanying
notion of local twistor transport. These we come to next.

A local twistor is a quantity Zα = (ωA, πA′), defined at any pointQof a space-time
manifold M, which transforms as

ωA �→ ωA, πA′ �→A′ +iωA �−1∇AA′�,

under a conformal rescaling of M’s metric, according to gab �→ �2gab (� being
a smooth positive-valued function on M). To get an exact correspondence with the
twistor concept introduced in §B2,wemust think ofωA (andπA′) as not being defined
with respect to a fixed origin point O, as in §B2, but now taken with respect to a
variable point Q in M. Recall from §B5 that in M, when the origin O is displaced
to a general point Q, with position vector qa with respect to O in M, the twistor
(ωA, πA′) defined with respect to O becomes (ωA – iq AA′

πA′ , πA′) with respect to Q.
The local twistor perspective on this is that (ωA, πA′), defined at O, when carried to
Q by local twistor transport, becomes (ωA – iq AA′

πA′ , πA′) at Q, and this will enable
us to extend this local twistor concept, in a conformally invariant way, to any entire
ray in a general M.

This is achieved via the definition of local twistor transport along a smooth curve
γ inM with tangent vector ta , which is

ta∇aω
B = −it BB

′
πB ′ , ta∇aπB ′ = −it AA

′
PAA′BB ′ωB,

where

Pab = 1

12
Rgab − 1

2
Rab, with Rac = Rb

abc

(sign conventions as in [31, 41]). Taking γ to be a ray—which is simply-connected
(byM’s global hyperbolicity)—we use local twistor transport to propagate (ωA, πA′)

uniquely all along γ , thereby providing us with our canonical twistor space Tγ ,
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assigned to γ . Correspondingly, we shall have spaces PTγ , Nγ , and PNγ , just as
in §B3. When M is conformally flat (and simply-connected), these spaces are all
independent of the choice of any curve γ connecting any pair of points inM, so the
local twistor spaces are all canonically identifiable, and may be referred to simply as
spacesT, PT,N, and PN, respectively, and we have a global twistor theory just as for
M, but this does not hold ifM is conformally curved. However, for a generalM, we
can regard the local twistor space Tγ as a kind of pseudo-tangent space, at the point
Γ of PN which represents γ . The twistor space Tγ would have its algebra AΓ and
the idea would be that these algebras would form a bundle over the various points
Γ of N j . If it could be assured that these bundles always have (holomorphic) cross
sections, for simple enough, e.g. having Euclidean topology and being appropriately
holomorphically (pseudo-)convex (see [51]), then this might provide an appropriate
candidate for the ANi required for §C7.

Not surprisingly, there is a lot of arbitrariness in this proposed procedure, but this
may be argued to be similar to the arbitrariness in a choice of coordinate system
when coordinate patches are used in a normal (“Čech”) procedure for constructing
a (complex) manifold, as with the non-linear graviton construction. Each such flat
ANi is to be thought of in the spirit of a “coordinate patch”. As already remarked
in §C7, as the patching goes, it is perfectly legitimate for the “intersections” of the
algebras ANi and AN j to relate to the actual pointwise intersections Ni ∩ N j of the
regionsNi andN j (since there is no issue of “α-surfaces” arising here). With regard
to the intersectionNi ∩ N j of two simple regionsNi andN j we require consistency
of the algebras ANi and AN j , retaining a consistent ket space on the intersection,
but we do not require a common ket-space to be present for the whole of their union
Ni ∪ N j . Such consistency would not generally be possible globally. Instead, our
fully “patched together” algebra A would not have a consistent ket space (unlessM
is conformally flat). The idea would be that a measure of the departure from global
consistency of a ket space, over the whole ofN, would be something of the nature of a
(non-linear) 1-function—as with the inconsistency expressed in Fig. 9 and which, in
space-time terms, would express the presence of a non-zero Weyl conformal tensor,
i.e. conformal curvature for M.

We need to be able to identify the points of M in terms of the algebra A. These
have to arise by non-local considerations (as was the case for the non-linear graviton
construction). Corresponding to any particular point P ofM there would be a locusP
in PN representing P, namely the family of all rays through P, which is topologically
S2, to be thought of as a projective 2-spinor space. We need something of the nature
of a completely commuting self-conjugate sub-algebra of A as exemplified by the
algebra generated by the four elements Z2, Z3, ∂/∂Z0, ∂/∂Z1, to define the origin
point O for M. For this to work in general, we would certainly need some suitable
generalization of the Kodaira theorem [53] that was central to the non-linear graviton
construction.

None of this yet encodes the formulation of Einstein’s equations. It is perhaps
remarkable, therefore, to find that Einstein’s �-vacuum equations are themselves
very simply incorporated into this kind of structure. For these equations provide
precisely the necessary and sufficient condition that local twistor transport globally
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preserves the infinity twistor Iαβ (and its dual I αβ ; see [41]. Accordingly, all we
require for the satisfaction of the Einstein�-vacuum equations is that the “matching”
of the algebras ANi from one patch to another preserves the infinity twistors. If all
these procedures (or something like them) indeed work roughly as intended (with
generalizations to the Yang–Mills equations and other aspects of physics, such as the
incorporation of particles’ rest-masses [45, 61–63]), then there could appear to be
possible openings for twistor theory applicable to basic physics generally. Among
many other things, this might perhaps directly incorporate the non-local features of
quantum theory in a natural way, and other matters not envisaged before. Yet, much
work needs to be done to decide whether or not the ideas outlined here can really be
made to hang together, and if they do not, then we need to know what might replace
them.

Acknowledgements I’m grateful for Joseph Kouneiher, for his comments, suggestions throughout
the process of writing and the preparation of this paper.
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What Are We Missing in Our Search
for Quantum Gravity?

Lee Smolin

Abstract Some reflections are presented on the state of the search for a quantum
theory of gravity. I discuss diverse regimes of possible quantum gravitational phe-
nomenon, some well explored, some novel.

1 Introduction

Despite enormous effort from thousands of dedicated researchers over a century,1

the search for the quantum theory of gravity has not yet arrived at a satisfactory
conclusion. We have indeed several impressive proposals, each of which partly suc-
ceeds in describing plausible quantum gravitational physics. Each tells a compelling
story that has, for good reason, won it advocates. Each has also run into persistent
roadblocks, which are pointed to by their skeptics. Looking back, before strings and
loops, before causal sets, causal dynamical triangulations, asymptotic safety, ampli-
tudes, twisters, shape dynamics, etc, to the early days of Bergman, Deser, DeWitt,
Wheeler and their friends, who would have thought that there would turn out to be
at least half dozen ways to get part way to quantum gravity?

Perhaps we might, for a moment, consider that the approaches so far pursued
are not really theories, in the sense quantum mechanics, general relativity and New-
tonian mechanics are theories. For those are based on principles and perhaps we
can agree that we don’t yet know the principles of quantum gravity. There are of
course proposals for quantum gravity principles, and part of the reason for this paper
is to prepare the ground for proposals of new principles (or, in some cases, such as the

1The idea that there might be quanta of gravitational waves was first mentioned by Einstein in
a paper in 1917 [1].
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holographic principle, sharpening up their formulation).2 Instead, let us, just for
a moment, think of the current approaches as models, which each describe some
plausible quantum gravitational phenomena. The different approaches can then be
thought of as complementary, rather than in conflict, as they investigate diverse
regimes of possible new physics. Could we hope that taking this view may open up
discussions between people working on different approaches, to the benefit of all of
us?

This frees us up to consider that, despite genuine achievements on several sides,
we have yet to see a real theory of quantum gravity. Can we then begin to look for
one? If we adopt this view, we can learn from all that has been done, while taking a
clean slate. How then do we proceed to look for a theory?

Of course, we work under an obvious handicap, which is that there are few exper-
iments whose results can guide us by winnowing down the possibilities. But there
are a few real Planck scale experiments, which have yielded clues, and which are
on the threshold of constraining possible quantum gravity effects at order of Energies

EPl
.

Even now we can be fairly sure that Lorentz invariance is not simply broken at that
order [3].3 There is also a window into possible quantum gravitational effects in
cosmology, such as low l anomalies [5] or parity breaking in B modes [6]. These
represent opportunities that must be explored.

In situations like this, it can be good to pause and take stock of where we are [7].
The following are some reflections on what we may be missing in our search for
quantum gravity.

2 What Is Missing from Attempts to Discover Quantum
Gravity?

Approaches are great, and we have good reasons for affection for particular ones.
But can we put aside the different approaches and, especially, their unfortunate
sociologies, and just talk physics?

We can start with a simple question:

2.1 Where Are the Zeroth Order Quantum Gravity
Phenomena?

In many prior revolutionary transitions there was a key first step where some well
studied phenomena, which are already understood in the then current theoretical
framework, were reinterpreted in terms of new concepts and principles. This often
leads to surprising new insights, by giving us a Rosetta stone for translating between

2Hence, this is a companion paper to [2].
3But see [4].
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the old and new theoretical languages. That is, at first the correspondence is a mere
reinterpretation of phenomena, already explained by the old theory, in a surprising
new language.

Associated with this dual description is a new parameter, which controls novel
phenomena. The correspondence establishes at order zero in the new parameter a
translation between the languages of the new and old theory. But as soon as this is
established we notice that the correspondence holds in a limited domain. There is
then a space to move beyond the zone of correspondence to novel phenomena whose
scale is set by the new parameter. By doing so we adventure into a new regime of
phenomena, but one with clear connections to established knowledge.

Here are some examples of how a transition to a new theory was initiated by
reinterpreting a familiar, well understood phenomena in new terms.

• Galileo’s reinterpretion of the tower experiment [8]. Consider the fact that a ball
dropped from the top of a tower falls to the bottom. This simple fact has two
interpretations, which lead to opposite conclusions. If you are an Aristotelean,
you interpret this result as evidence that the earth doesn’t move. But if you are
Galileo, and believe in the principle of inertia, you interpret the same result as a
confirmation that the Earth could be moving without our experiencing any effects.
After all, he argued, a ball dropped from the top of a ship’s mast, while sailing
smoothly in the harbour of Venice, falls to the bottom of the mast.

• In special relativity; mass is reinterpreted as energy. One new phenomena this
allows is pair creation i.e. the transformation between matter-energy and other
forms of energy. The new parameter is v2

c2 .• In general relativity, the equivalence principle explains in a radically new way the
old fact that all massive objects fall with the same acceleration. Newton understood
this as a consequence of the equality of inertial and gravitational mass, which
seemed to be a coincidence. Einstein explained this as a necessary consequence
of a new principle. This allows gravity to be reinterpreted as the curvature of
spacetime. The new parameter is GM/c2

r .
• Matter was initially modelled as a continuum, i.e. fluids, gases and solids. Boltz-
mann, Kelvin and others reinterpreted continuous, thermodynamic phenomena in
terms of the atomic hypothesis. At first they were able to work out many corre-
spondences, such as the ideal gas law and the laws of thermodynamics. These
correspondences were exact in the thermodynamic limit, in which Avogadro’s
number would go to infinity. Then, Einstein and others noted that if Avogadro’s
number were finite there would be novel phenomena such as Brownian motion.

Let us then ask, Where are the zeroth order quantum gravity phenomena? Can
we find zeroth order correspondences between some well known phenomena and
quantum gravity? We don’t have a real start on quantum gravity unless we can
provide an answer to this. Here are some proposals for zeroth order quantum gravity
phenomena.

1. The zeroth order phenomena is locality itself. This must be the case if as is some-
times hypothesized, locality is emergent in the classical or continuum limit of a
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fundamental quantum theory of gravity, whose states are networks living in no
space, perhaps spin networks or records of entanglement. The first order depar-
tures from locality are quantum phenomena, especially entanglement. Indeed
one version of this proposal is that spatial relations are emergent from entangle-
ment [9–12].
The second order departures from locality are then disordered locality [13] and
relative locality [14, 15].

2. More precisely, the zeroth order quantum gravity phenomena is space itself,
specifically its low dimensionality and fantastically low curvature, compared to
the Planck scale. Julian Barbour used to emphasize that space itself, and espe-
cially the low dimensionality is a highly nonlocal phenomena [16]. This is seen
if you try to express the physics of N particles in terms of their relative distances,
r jk , alone. For these

N (N−1)
2 quantities are determined in terms of 3N − 6 coor-

dinates, which is many fewer. This means the r jk are subject to a large number,
C = N (N−7)

2 + 6 constraints. These can be understood as the vanishing of the
volumes of all independent n-simplices, with n > 3, made from the r jk .
Indeed, the AdS/CFT correspondence succeeds in generating one dimension
of space from d others, in the special case that the cosmological constant is neg-
ative [9–11, 17]. This provides many interesting examples to study, and provides
a partial Rosetta stone for translating between conformal field theory phenom-
ena and gravitational phenomena. It however remains to be seen whether the
construction helps us do what we would really like to do which is to understand
how all he dimensions of space emerge from something more fundamental.

3. The zeroth order phenomena is gravity. This is suggested by the thermodynamic
derivations of general relativity by Jacobson [18, 19] and elaborations on it [2,
20, 21]. In the course of the derivation one refers to quantum phenomena such
as the Unruh temperature [22], so � appears. Another � appears explicitly in
expressing an entropy proportional to area. These �’s cancel in the resulting
Einstein’s equation. This applies even more to Verlinde’s entropic derivation of
Newtonian gravity, in which �’s and c’s are both present, but cancel [23].

4. Could another zeroth order phenomena be MOND? Perhaps MOND [24] is a
quantum gravity effect, for positive cosmological constant, �, which arises in a
regime, or phase, of accelerations small compared to

a� = c2
√

� (1)

which also involves the cancellation of �’s and c’s. This idea is explored from
diverse perspectives in [2] and in [25–34].

5. The zeroth order phenomena is the universe itself, its vast scale and stability as
well as the relative stability of the laws.

The hypotheses just mentionedmay serve as bridges to the true theory of quantum
gravity. While we are looking for such bridges, let’s keep in mind theories and
hypotheses that are clearly transitional and incomplete, but nonetheless may capture
some of the truth.
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1. The proposal that space is emergent from entanglement [9–12].
2. The causal set hypothesis that spacetime is really a discrete causal set made up

of discrete events and their causal relations [35–40]. This is very like the hypoth-
esis that matter is made of large but finite collections of atoms. The first order
phenomena would be analogous to Brownian motion. Two have been proposed:
(1) the hypothesis that the cosmological constant is the result of a fluctuation
[41] and (2) covariant dispersion [42].

3. The shape dynamics hypothesis that the universe is not a four dimensional space-
time mod spacetime diffeomorphisms [43, 44]. It is instead reinterpreted as an
evolving three dimensional geometry mod spatial diffeorphisms andWeyl trans-
formations (i.e. local conformal rescaling). This is analogous to Galileo’s rein-
terpretation of the tower experiment from an Aristotelean demonstration of the
Earth’s stationarity to a demonstration of the principles of relativity and inertia.
A proposed first order phenomena where the two are no longer different interpre-
tations, but differ substantially is in black hole singularities, which are eliminated
in favour of bounces to baby universes in shape dynamics [45].

4. In relative locality [14, 15] and its discrete version, energetic causal sets [37–
39], a picture of particle dynamics in which relativistic particles propagate on
a fixed background spacetime is replaced by an apparently equivalent picture
in which particles propagate on a fixed momentum space. Interactions which
happen locally at spacetime events in the old picture become events, elements of
a causal set, at which energy-momentum conservation is imposed. In this new
picture spacetime emerges as an auxiliary description. The first order phenomena
where they diverge is gotten by curving or adding torsion or non-metricity to
momentum space, which leads to the novel phenomena of relative locality.

5. The AdS/CFT hypothesis in the planar limit inwhich N → ∞, is a precise dic-
tionary for translating some classical gravitational phenomena into an equivalent,
non-gravitational language [17]. There are many interesting correspondences.
And there are clear paths for going beyond zeroth order to give novel quantum
gravitational phenomena.
It is then urgent to understand this correspondence in terms that both don’t rely on
a negative cosmological constant and apply very generally, without the need for
supersymmetryorspecialdimensions.Somesuggestions toexploreare in[46]and
also in the companion paper [2], where I suggest that the AdS/CFT correspon-
dence is an expression of amore general quantum equivalence principle.

2.2 Phenomenological Limits and Regimes
of Quantum Gravity

Whatever the quantum theory of gravity is, it will depend on four dimensional con-
stants, �, G, c and �. We are familiar with the commonsense idea that the limit of
� → 0 with the others fixed should define general relativity, while the limit in which
G and � are taken to vanish should give quantum field theory. But, there are several
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other interesting limits of the three parameters �,G and c, which each define a regime
of quantum gravity phenomenology.

Two interesting regimes come from taking � → 0; while c is held fixed; these
may be called the non-quantum regimes of quantum gravity.

2.2.1 The Relative Locality Regime

We can recall first the relativity locality regime in which G and � are both taken to
zero, with c held fixed, but with the Planck mass also held fixed, giving us [14, 15]

m2
p = �c

G
(2)

This defines a regime of phenomena in whichmp and c are fixed while both quantum

and gravitational effects are negligible, because G = � = 0. Since l p =
√

�G
c3 → 0

there is no quantum geometry. In this regime the propagation and scattering of par-
ticles may be deformed due to curving momentum space [14, 15]. But there is no
corresponding deformation of wave propagation. Indeed, as � = 0 the correspon-
dence between waves and particles is lost.

Notice that in this regime the entropy of black holes goes to infinity, while their
temperature remains finite [47].

2.2.2 The Strong Gravity Regime

Alternatively we can explore phenomenology where G → ∞ as � → 0, such that

�G

c3
→ l2p, fixed (3)

again with c held fixed. It follows that mp → 0. Now there is no deformation of
particle dynamics, while wave propagation can be modified, for example as,

(
2

c2
∂2

∂t2
− ∇2 − l2p∇4 + · · ·

)
φ = 0 (4)

Now the black hole entropy stays finite while the temperature of black holes goes
to zero.

An unusual feature of this limit is that it is the opposite of the semiclassical limit.
In this limit the commutation relations of quantum gravity are unchanged, because
they involve l2p.

[A j
b(x), Ẽ

a
i (y)] = �Gδabδ

j
i δ

3(x, y) (5)

Meanwhile, the commutators of matter degrees of freedom go to zero
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[φ(x), π(y)] = ı�δ3(x, y) → 0 (6)

2.3 The Holographic Regime

A very interesting regime about which a lot is known is the one studied in most
calculations in the AdS/CFT correspondence [17]. This is based on a limit in
which one takes N large, where N measures the ratio of the cosmological constant
scale to the Planck scale.

N = R2

l2pl
= 1

�G�
(7)

Here� = − 1
R2 . N can be seen as counting the number of degrees of freedom defined

on a boundary in an asymptotically anti-deSitter spacetime.

2.4 The Loop Quantum Cosmology Regime

A second cosmological regime is related to quantum cosmology [48, 49], and is
defined by the limit in which the Planck energy Ep is taken to infinity, while the
Planck energy density

ρp = Ep

l3p
= c7

�G2
(8)

is held fixed.The speed of light, c is also kept fixed. In terms of � and G this limit is
defined by scaling by a dimensionless t

� = �0t
4, G = G0

1

t2
(9)

where t is then taken to infinity, so that Ep and l p both diverge.
This is justified by the FRW equation or Hamiltonian constraint, which can be

read as

(a′)2 = ρmatter

ρp
+ 1

Ep

∫
d3x(∂hi j )

2. (10)

Here the spatial metric is expanded as

gi j = a2(δi j +
√

l p
m p

hi j ) (11)
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and ′ denotes differentiation with respect to dimensionless conformal time. In the
regime defined by holding ρp fixed while Ep is taken to infinity the spatial inho-
mogeneities decouple, gi j → a2δi j , and we are left with the homogeneous equation
studied to good effect in papers on loop quantum cosmology [48, 49].

2.5 Are There Any Newtonian Quantum Gravity
Phenomena?

The regimes we mentioned previous are relativistic in that the speed of light, c, is
held fixed. But, are there phenomena which are measured in units of hG or h/G with
no c’s? i.e. is there a Newtonian regime of quantum gravity?

Here is a curious fact: combinations of just � and G without c are not simple. To
get simple quantities like a mass or a length we need to combine them with c. Indeed
the Planck mass and Planck length involve all three constants, �, G and c. This is
a simple truism but it means that any of the characteristic phenomena we associate
with l p and mp, such as the discreteness of quantum geometry or the unification of
the forces, will go away in the limit c → ∞ and so they will not have Newtonian
analogues.

So it is worth asking whether there are any characteristic Newtonian quantum
gravity phenomena, which occur at scales parametrized by combinations of � and G
alone, without c.

Indeed, there are such characteristic phenomena associated with combinations of
the other two pairs. � and c go together well to convert length tomomentum or time to
energy. Together with e2 they give us the dimensionless fine structure constant, which
organizes the scales of phenomena in quantum electrodynamics. G and c together
convert a mass to a length RSchw = 2G

c2 M . But simple combinations of � and G don’t
seem to make anything that parameterizes a new, unexpected phenomena.

By dimensional analysis, the phenomena exhibited by aNewtonian quantumgrav-
ity regime would involve some peculiar physical dimensions. Without c, there would
be no Planck mass, nor is there a Planck length. There is a unit of mass per square
root of velocity.

A2 = �

G
= mass2

speed
(12)

There is also a unit of length to the fifth per time cubed.

B = �G = length5

time3
(13)

This suggests Lifshitz scaling at small velocities. Perhaps a connection to MOND
[24]?
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It would be very interesting to discover a regime of phenomena where c has been
taken to infinity, but where the new quantities A and B are measurable. Presumably
this involves heavy, slow quantum gravity objects.

Note that it can’t involve an analogue black holes as c has gone to infinity.
If we look at more complex combinations of � and G, we find a conversion from

mass−3 to length, given by

rg = �
2

G

1

m3
(14)

This is the “gravitational Bohr radius”, i.e. from the Schroedinger equation, the
ground state of an atom held together by a Newtonian gravitational potential has a
wave function

ψ(r) = e− r
rg (15)

A Newtonian gravitational atom would be a good trick to play with, but it wouldn’t
teach us anything about quantum gravity. In any case they will be prohibitively big
for atoms and small for planets, as

rg = l p
m3

p

m3
(16)

with a correspondingly tiny binding energy:

Eg = −1

2

G2m5

�2
= −mc2

2

(
m

mp

)4

(17)

2.6 Newtonian Quantum Cosmology

Of course there is another dimensional constant in quantum gravity, the cosmological
constant, � and, with it together with � and G one can form a complete set of units
without c. These depend on whether you take the fixed constant to be the inverse
length-squared � = 3

R2 or the Hubble time T = H−1.

There is a third possibility, which is to hold the cosmological acceleration a� = c2

R
fixed. These three regimes are inequivalent as c has been taken to ∞.

Note that we take care to distinguish the empirically measured MOND accelera-
tion, a0, which is determined to be roughly 1.2 × 10−8 cm/s2 from the cosmological
acceleration a�, which is related to the cosmological constant.

• Newtonian quantum cosmology: � = 1
R2 fixed as c → ∞.

mg =
(

�
2

GR

) 1
3

= mp

(
l p
R

) 1
3

= 10−20mp (18)
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tg =
(
R5

�G

) 1
3

= R

c

(
R

lp

) 2
3

(19)

where in the right hand expressions the c’s cancel.
Note that mp is roughly the proton mass!. This is a c → ∞ residue of Dirac’s
large number phenomena.

• Hubble-time Newtonian quantum cosmology T = H−1 fixed as c → ∞.

rH = (
�GT 3

) 1
5 = R

(
l p
R

) 2
5

= 10−24R (20)

mH =
(

�rH
GT

) 1
2

= 10−12mp = 10−20mp (21)

• MOND quantum cosmology a� = c2

R fixed as c → ∞ and R → ∞.
Here there is a unit of velocity

v0 = (
�Ga2�

) 1
7 = c

(
l p
R

) 2
7

≈ 10−7cm/s (22)

We can study a MOND bound atom, which has a potential

UMOND = −GmM

r
+ mv2

T F ln r/ρ0 (23)

where v2
T F = √

GMa0, expressing the Tully-Fischer relation [50]. This gives a
MOND-Bohr radius of

rMOND = �

mvT F
(24)

The binding energy is order
E0 ≈ −mv2

T F (25)

which we note has no � in it
• The classical MOND limit a0 ≈ a� = c2

R fixed as c → ∞, R → ∞ and � → 0,
with G fixed.
The key constant here is A0 = Ga0, which is a conversion between mass and
velocity to the fourth power. This constant is actually measured, by observations
of the Tully-Fischer relation [50]

v4 = Ga0Mb (26)

where Mb is the baryonic mass of a galaxy, and v is the stellar rotational velocity
in the outer disk where the rotation curve flattens out. Fits to data find
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a0 = 1.2 × 10−10ms−2 (27)

which is not far from a� = c2
√

�
3 .

Note that this is a limit in which � → 0 from above.
A reason we might expect to see novel phenomenon in this limit is that for small
accelerations,

a < a� (28)

the equivalence principle need not apply. One way to say this is that an observer’s
acceleration horizon-the horizon created by their own acceleration, falls near their
cosmological horizon when a < a�. In [2, 34] I argue that this could be the origin
of MOND.

2.7 Energy and Its Positivity

Akey issue for anynon-perturbative approach to quantumgravity is the role of energy.
The puzzle originates from the equivalence principle, which forbids there from being
a localmeasure of the gravitational field. This is so that a freely falling observer has no
way to distinguish their situation from an inertial observer in Minkowski spacetime,
to leading order in separations over curvatures.

As a consequence, the energy of the gravitational field can only be measured
quasi-locally, or at infinity. So there is no expression of the energy of a spacetime,
or region thereof, expressed as a volume integral over a positive definite expression.

It turns out that the energy of the gravitational field is still positive [51]. This is
very fortunate, otherwise flat empty spacetime would be unstable. But this positivity
is an on-shell property. It only holds in the presence of the field equations or, in the
Hamiltonian formulation-of the constraints.

We the must ask whether there is in quantum gravity an operator on the space of
physical states that represents the energy which is both positive definite and Hermi-
tian, in the physical inner product. Such an operator cannot be just the sum of squares
of local operators.

In [52] I have explored conditions on the physical inner product that must be
satisfied if there is to be a positive definite and Hermitian operator representing the
ADM mass.

2.8 Where Does the Planck Mass Come From?

There is another issue regarding energy that challenges quantum gravity theories.
This is that the Planck area, l2p = �G

c3 turns up easily and naturally, while the Planck
mass



298 L. Smolin

mp = �

l p
. (29)

does not easily turn up. The reason is the following.
The action principle for the gravitational field in general relativity, including the

boundary term, is proportional to c3

G .

Sgr = − c3

8πG

[∫

M
d4x(R − 2�) −

∫

∂M
d3σκ

]
−

∫

M
d4xLmatter (30)

This is indeed the only place that G appears in the action. A little dimensional
analysis tells us why. The Riemann curvature scalar, R, and the intrinsic curvature κ

are both purely geometrical. R has units of inverse length-squared while the intrinsic
curvature κ has units of inverse length. If the action is to be, well, an action, this has
to be turned into a mass. The conversion factor 1

G is needed to convert a length into
a mass. The same is true for the boundary term, it has a 1

G in front of it.
The phase factor of the path integral then is of the form

e
ıS
� = e−ı 1

8π�G [∫M d4x(R−2�)−∫
∂M d3σκ]− 1

�

∫
M d4xLmatter

(31)

so we see that in the absence of matter, G only appears in the combination l2p = �G.
Without matter, the gravitational action is invariant under a scaling

� → λ�, G → G

λ
(32)

The same is true of the commutation relations between the Ashtekar connection,
Ai
a and the inverse sensitized from field, Ẽa

j which represents information about the
three geometry

[Ai
a(x), Ẽ

b
j (y)] = −�Gδ3(x, y)δbaδ

i
j (33)

It then seems impossible without matter to produce the expression (29) for mp. It is
the same for the spin foam action, which differs from a topological field theory by the
imposition of the simplicity constraint. The latter is a constraint on representations
and is dimensionless.

We see the same story when the boundary term comes from the boost Hamiltonian
of FGP [21, 53, 54], which has dimensions of action (since it is conjugate to a
dimensionless boost), and is equal to,4

HB = c3

8πG
A(W ) (34)

4Note that this is the contribution to the action from a corner of a causal diamond, and hence comes
into an action directly, without being integrated over time.
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where A(W ) is the area of the horizon as seen by the boosted observer.
Indeed, in LQG the Planck area and Planck volume appear easily and give the

scale of the spectrum of quantum geometry. But it appears that to talk about the
Planck energy, we need to couple the quantum geometry to matter. Matter terms in
the action will bring in independent factors of �.

One place the Planck mass appears is the energy for the Schwarzchild black hole
in the isolated horizon approach [55], which is taken to be

H = M = c2

4πG

√
A ≈

√
�

G
n
c2

4π
(35)

Here n stands for the area quantum numbers. But this is written down by definition,
it is not derived from a Hamiltonian operator defined on the whole Hilbert space.

If we want LQG to make predictions for quantum gravity phenomenology, it
has to be able to speak to us about corrections of the form of energies in units of
1
mp

≈
√

G
�
.

This is connected to the assumption that the quantum theory of gravity predicts
phenomena associatedwith gravitons such as the gravitational analogue of the photo-
electric effect, at least for wavelengths long compared to l p. This must ultimately be
due to a normalization of the linearized hamiltonian which gives to each graviton an
energy �ω, which is independent of G. Linearized and perturbative quantum gravity
introduces the Planck mass, when it gives the perturbed metric, hab, defined by

gab = ηab +
√
G

c2
hab (36)

canonical dimensions of square root of energy per length. This and the assignment
of � to loops separates the dependence on G and �. This separation occurs also in
the semiclassical approximation [56]. But I know of no mechanism for producing
those factors from the non-perturbative quantum theory without invoking matter.

But if mp is missing in the bulk dynamics of LQG and spin foam models then it
may be because these describe, not full quantum gravity, but a strong coupling limit
of the theory in which � → 0 and G → ∞ with l p held fixed and mp taken to zero.
Indeed we can see this, from the form of the Ashtekar connection [57],

A = �(e) + ıG� (37)

so in the limitG → ∞we pick up the ultra local limit in which all spatial derivatives
go away.

In the light of these comments we can consider the derivations of black hole
thermodynamics by Perez et al. [53] and Bianchi [54]. At two crucial steps in their
derivations they introduce � independently when they relate the simplicity constraint
to the first law of thermodynamics.5 This requires identifying Ba = �Ka as the boost

5See [21] for discussion of how the first law of thermodynamics plays a role in these arguments.
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Hamiltonian in the Hilbert space of a triangle. Similarly they identify TU = �

2πc as
the boost temperature. These independent introductions of � make it possible to

extract Newton’s constant from the ratio
l2p
�

= G. Without this they couldn’t derive
the classical Einstein equations (with matter) from the quantum statistical physics of
the horizon.

2.9 Gravity Is Missing

If LQG and other approaches fail to talk about energy, they fail too when it comes
to gravity. That is, in classical general relativity there is a straightforward way to
derive Newton’s gravitational theory as the non-relativistic approximation to general
relativity. If one pulls a scalar field, φ out of the metric by a rescaling gab → g′

ab =
eφgab it follows right away that

∇2φ = 4πGρ (38)

I know of only one way to get this out of the Hamiltonian approach to LQG,
which is by an indirect entropic argument [58].

This is of course consistent with the hypothesis that the Hamiltonian approach to
LQG describes quantum general relativity only in the strong coupling limit in which
G → ∞ while � → 0.

The situation is better in spin foammodels where one can recover the 1
q2 behaviour

of the graviton propagator from correlation functions of boundary excitations [59].

2.10 Maximal C PT Violation

There is another line of thought that should be connected to this one. This is the set of
arguments that lead to the conclusion that irreversibility and time reversal invariance
breaking are fundamental. These are discussed in [37–39, 60–63]. These lead to the
conclusion that the familiar time symmetric laws hold in a limited regime, beyond
which we should see the effects of a preferred fundamental arrow time. Models for
how time reversal physicsmight emerge in a limited regime from amore fundamental
time irreversible physics are described in [37, 64].

One consideration along these lines begins by noting that according to the CPT
theorem, CPT must be a symmetry of any Lorentz invariant relativistic QFT . But
global Lorentz invariance is an accidental or emergent symmetry of the ground state
of the gravitational field-Minkowski spacetime. Thus wemay hypothesize thatCPT
is enforced only to the extent that the assumptions of the CPT theorem hold. This
CPT regime should then be delimited by, R the radius of curvature of spacetime.
Thus we should expect to find CPT violation on the order of
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�XCPT = λ

R
(39)

where λ is a wavelength.
Here is one idea: assume the fundamental theory is irreversible, but there is an

emergent theorywhich is a local, lorentz invariant QFT. Then by the CPT theorem the
emergent theory has CPT symmetry. This suggests that CPT is maximally broken,
given that CPT is enforced by the lorentz invariance of the emergent theory. Now
lorentz invariance is broken if the metric is curved, so the CPT breaking should be
proportional to the curvature tensor. So they could be given by effective actions like:

�S ≈ 1

mp
Rabψ̄γ aγ bψ (40)

The second idea is that my precedence theory of quantum dynamics, introduced
in [65], has no need to be time reversal invariant, so if its true we should see rare
processes which break time reversal.

3 A New Strategy: Quantum Gravity as a Principles
Theory

In light of these reflections we might consider novel strategies for searching for
quantum gravity. One is to stop asking for a specific model of quantum spacetime
but, instead, to search for general principles which might constrain the choice of
models to investigate. That is, following Einstein, we seek a principle theory, rather
then a constitutive theory. This strategy is explored in a companion paper [2].
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A Schema for Duality, Illustrated
by Bosonization

Sebastian De Haro and Jeremy Butterfield

Abstract In this paperwepresent a schema for describingdualities betweenphysical
theories (Sects. 2 and 3), and illustrate it in detail with the example of bosonization:
a boson-fermion duality in two-dimensional quantum field theory (Sects. 4 and 5).
The schema develops proposals in De Haro (Space and Time after Quantum Gravity,
2016 [15]; Duality and Physical Equivalence, 2016a [16]): these proposals include
construals of notions related to duality, like representation, model, symmetry and
interpretation. The aim of the schema is to give a more precise criterion for dual-
ity than has so far been considered. The bosonization example, or boson-fermion
duality, has the feature of being simple yet rich enough to illustrate the most rele-
vant aspects of our schema, which also apply to more sophisticated dualities. The
richness of the example consists, mainly, in its concern with two non-trivial quan-
tum field theories: including massive Thirring-sine-Gordon duality, and non-abelian
bosonization. This prompts two comparisons with the recent philosophical literature
on dualities. (a) Unlike the standard cases of duality in quantum field theory and
string theory, where only specific simplifying limits of the theories are explicitly
known, the boson-fermion duality is known to hold exactly. This exactness can be
exhibited explicitly. (b) The bosonization example illustrates both the cases of iso-
morphic and non-isomorphic models: which we believe the literature on dualities
has not so far discussed.
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1 Introduction

In this paper we present a schema for describing dualities between physical theories
(Sects. 2 and 3). Then we illustrate it in detail with the example of bosonization: a
boson-fermion duality in two-dimensional conformal field theories (Sects. 4 and 5).

Before we introduce these two parts in turn (Sects. 1.1 and 1.2), we briefly set our
project in the context of the legacy of Hilbert’s work, a hundred and more years ago,
on the foundations of physics and its axiomatisation—work which it is an honour to
commemorate. This legacy is of course so broad and deep that we can only touch
on it. We will confine ourselves to recalling two Hilbertian ideas about the role of
axiomatizing a theory (eithermathematical or physical): ideaswhich obviously relate
to our project, and which we will return to in Sects. 2.4 and 5.4.

The background for both ideas, indeed for all Hilbert’s work in axiomatisation
(such as his axiomatisation in 1899 of Euclidean geometry, and his choosing as the
sixth Problem in his famous 1900 ‘To Do’ list, the axiomatisation of mechanics and
geometry)was, of course, the development of formalmethods, in particular axiomatic
studies, in all of mathematics from about 1850.1

First, there is the idea that an axiom system can be realized, i.e. made true, by very
different models. (Recall Hilbert’s famous remark that ‘one must be able to say at all
times—instead of points, straight lines and planes—tables, chairs and beer-mugs’.)
We shall see that duality, in the sense nowadays used in physics, gives illustrations
of this idea. Indeed, very vivid illustrations. For duality, in physicists’ current jargon,
involves there being two theories that look very different (not just in their formulation
and concepts, but also apparently in the topics they are about) that are in some sense
equivalent. In particular, there is a ‘dictionary’ that pairs off the concepts in one
theory with those in the other. Thus in our example of bosonization, one theory will
describe fermions, while the other describes bosons: very different field-contents.
So duality illustrates this Hilbertian idea: but on a grand scale! For now, it is entire
physical theories that are the very different realizations of some common core axiom
system. Indeed, as explained in Sect. 1.1: we shall call the two sides, i.e. the items
that are dual to each other, models (viz. models of the single common core), rather
than theories. So this usage echoes the Hilbertian idea.2

Second, Hilbert sees the activity of axiomatisation, not as giving a theory its
final form and so best undertaken when (one hopes!) it is fully understood, but as
worthwhile even when we recognize that the theory is far from its final form. For it is
worthwhile precisely in order to deepen our understanding of the theory. Again this

1Again, we can only touch on the vast literature. For Hilbert’s Problems of 1900, cf. e.g. [32, 33].
For the sixth Problem, cf. [11–14, 51]. For some context for Hilbert’s famous ‘beer-mug’ remark,
cf. [38]. Finally, we note that Gray [34] makes an interesting case that this broad development
represented a rise of ‘modernism’, in a sense analogous to that in art and literature: cf. also [35].
2The Hilbertian idea has, of course, other important facets: for example, in fostering the idea that an
axiom system—or more generally, a doctrine expressed in language—‘implicitly defines’ its terms.
This has been very influential in the foundations of logic and mathematics, beginning with Hilbert’s
debate with Frege. It has also of course been contested: in the face of non-categoricity, the claim to
‘define’ terms by a body of doctrine containing them is questionable.
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idea has been very influential. In physics, the best known example of its influence is
no doubt von Neumann’s monumental treatise on quantum mechanics [56], which
over the decades has spawned so many axiomatic studies of quantum mechanics,
most directly the quantum logic approach. But also in philosophy, the idea was very
influential. Reichenbach and other logical empiricists saw axiomatisation as the way
by which philosophers could clarify scientific theories (and in particular, distinguish
their factual and conventional contents—aproject that, for the logical empiricists,was
the distinctive task of philosophy). Thuswe think of our own project—to formulate in
general, almost formal, terms, the notion of duality (Sects. 2 and 3), and to illustrate
this in bosonization (Sects. 4 and 5)—as an exercise in the tradition of this idea.3

In Sect. 1.1, we briefly introduce our notions of theory and model, and of duality
as an isomorphism between models. We motivate our usage and compare the notion
of duality to the analogous notion of symmetry. In Sect. 1.2, we introduce our main
example, of bosonization, and compare this example to other examples used in the
literature on dualities.

1.1 The Schema

The schema develops proposals in De Haro [15, 16]. Like other authors, we take
duality to be a suitable relation of equivalence between physical theories. The main
features of our schema are that:

(1): we distinguish uninterpreted theories, which we call bare theories, from
interpreted theories;

(2): we emphasize that, wholly independently of issues of interpretation, a bare
theory can have many realizations, which we call models;

(3): we take duality to be an isomorphism between two models of a single bare
theory.

Of these three features, it is (2) and (3) that are the distinctive ones. For several
authors also define duality in terms of uninterpreted theories. This has the advantage
of making verdicts of duality not beholden to semantic issues, and so less vague
or even controversial. And it allows cases of duality without any sort of physi-
cal or semantic equivalence—which certainly occur, e.g. Kramers-Wannier duality
between the high and low temperature regimes of the statistical mechanics of a lat-
tice. But features (2) and (3)make duality an equivalence (formally: an isomorphism)
between items that are not only uninterpreted, but also more specific than an unin-
terpreted theory: viz. realizations—which we will call ‘models’—of a (single) bare
theory. A prototypical example is: taking a bare theory to be an abstract algebra of
quantities (maybe also equipped with a dynamics, viz. as a 1-parameter group of

3For some ‘post-Hilbert’ history of axiomatisation as ‘deepening the foundations’, cf. [52, 53]. But
we should add that we do not endorse the logical empiricist project of distinguishing, once and for
all, the factual and conventional parts of a theory: our misgivings are essentially those of Putnam
[47].
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automorphisms, and a set of abstract states, i.e. rules for evaluating (i.e. assigning
values to) the quantities): a model or realization is given by a representation (in
the mathematical sense) of the algebra, together with a realization of the rules for
evaluating the quantities, for the representation in question, i.e. a set of maps to the
relevant field, of complex or real numbers.

We shall say ‘model’ rather than ‘realization’, not least for brevity. But we should
disavow, here at the outset, some misleading connotations of the word ‘model’.
Indeed, there are three misleading connotations. The word ‘model’, as contrasted
with ‘theory’, often connotes:

(i): a specific solution (at a single time: or for all times, i.e. a possible history)
for the physical system concerned, whereas the ‘theory’ encompasses all solutions—
and in many cases, for a whole class of systems;

(ii): an approximation, in particular an approximate solution, whereas the ‘the-
ory’ deals with exact solutions;

(iii): being part of the physical world (in particular, being empirical, and-or
observable) that gives the interpretation, whereas the ‘theory’ is of course not part
of the physical world, and so stands in need of interpretation.
So we stress that our use of ‘model’ rejects all three connotations. As we just said:
for us, a model is a specific realization—one might say ‘version’—of a theory. But
it is a version of a bare, i.e. uninterpreted, theory, and the version is itself bare,
i.e. uninterpreted. So a model adds details—we shall say: ‘specific structure’—to its
bare theory. But these details are not a matter of specifying: (i) a solution or history
of the system; or (ii) approximation(s); or (iii) interpretation(s). Rather, the extra
details are extra mathematical structure: just like a representation of a group or an
algebra has extra details or structure, beyond that of the group or algebra of which it
is a representation.4

Indeed, for clarity later on, we should distinguish two broad kinds of extra detail
or structure that a model adds. Again, group representations provide obvious—and
countless—examples.

(A): The ‘concreteness’ of a specific mathematical object: such as GL(n, |C),
the general linear group over |Cn , or any subgroup of it—any of which is a ‘concrete’,
not abstract, group. (Agreed, the concrete vs. abstract contrast is flexible; but this
will not matter for anything that follows.)

(B): The fact that themathematical notion of representation requires homomor-
phism, not isomorphism: i.e. it allows non-injectivity and non-surjectivity. Thus two

4We agreed that for our notion, the word ‘model’ has disadvantages. But note that other words also
have disadvantages. For example: ‘formulation’ connotes that any two formulations of a theory
are ‘notational variants’, i.e. fully equivalent: they say exactly the same thing about the world.
But that is far from true for our notion (and this matches the connotations of ‘model’): for us,
two models of a bare theory are in general not isomorphic, and not in any sense equivalent; and
so typically, it is surprising to find two isomorphic models, i.e. to find a duality. Other exam-
ples: ‘realization’, ‘instance’ and ‘instantiation’ connote being part of the physical world, as in
‘the mechanism/hardware which realizes some specific function/software’, or ‘the object is an
instance/instantiation of the predicate’—which is the misleading connotation (iii) above.

Notice that in theoretical physics, the use of model is, roughly, between: (a) our use, and (b) (ii)
and (iii) above: e.g. the ‘massive Thirring model’ or the ‘sine-Gordon model’.
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representations of an abstract group G can be non-isomorphic as groups—i.e. differ-
ent, even as described in only abstract group-theoretic terms—to G; and of course
also, non-isomorphic to each other.
Of course, these kinds (A) and (B) of ‘extra detail’ usually occur together: just think
of how every abstract group can be represented by the trivial one element subgroup
of GL(n, |C), the n × n identity matrix.

Our picture is therefore of a bare theory, that can be realized (we will say: mod-
elled) in various ways: like the different representations of an abstract group or
algebra. And these models are in general not isomorphic, since they differ from one
another in their specific structure: like inequivalent representations of a group. But
we say: when the models are isomorphic, we have a duality.

In Sects. 2 and 3, we will develop this view of duality (with Sect. 2 dealing with
theories, models and interpretations, and Sect. 3 with symmetries). We end this Sub-
section with two further remarks about our schema. The first motivates our usage
of ‘theory’ and ‘model’; the second compares duality with that more familiar topic,
symmetry.

(1): Motivating our usage:— Dualities in physics give a rationale for our usage
of ‘theory’ and ‘model’, as introduced above. (This rationale does not depend on the
contrast between interpreted and uninterpreted (bare) theories; and sowe temporarily
set that aside.) Recall that in both physics and philosophy of physics, ‘theory’ is
usually taken as something like a set of differential equations, and ‘model’ is usually
taken as something like a solution to such a set. But a duality often shows us that
what we first considered as distinct theories can, or should, be seen as the same
theory, in two guises. Agreed, that is very rough speaking: which will of course
be clarified in what follows. But for now, we only need the point that this kind of
surprising discovery prompts us to move our usage of ‘theory’ “one level up”. After
all: if two sets of differential equations somehow express the same theory, then a
theory cannot be identified with such a set. Besides: if we thus move our usage of
‘theory’ one level up, we can still keep the usual intuitive idea of how ‘theory’ and
‘model’ are related—viz. that a model is a realization, or instance, of a theory—by
correspondingly moving our usage of ‘model’ one level up. And this is what we have
proposed.

To sum up: the broad and widely-agreed idea, that in physics a duality often sug-
gests that the two theories concerned, though they look different, are in fact ‘the
same’, motivates our proposed usage of ‘theory’ and ‘model’.

(2): Analogy with symmetry:— The analogy is (as is often remarked) that ‘a
duality is like a symmetry, but at the level of a theory’. Here, and for the rest of
this Subsection, we will temporarily set aside our jargon just announced, of ‘theory’
versus ‘model’. We will temporarily join the literature’s usual jargon of taking a
theory to be interpreted, and a model to be—not a ‘version’ of the theory with some
specific structure of its own—but a solution (or representative of a solution) of the
theory.



310 S. De Haro and J. Butterfield

That is, the analogy is: while a symmetry carries a state to another state that is ‘the
same’ or ‘matches it’, a duality carries a theory to another theory that is ‘the same’
or ‘matches it’. We will endorse this analogy. So the interesting questions, for both
sides of the analogy, will concern the different ways to make precise ‘the same’ or
‘matches’. We give details (respecting our proposed ‘theory’ vs. ‘model’ usage!) in
Sects. 3.1 and 3.2. But the questions about making precise ‘the same’/‘matches’ can
be introduced as follows.

A symmetry a (we write a for ‘automorphism’) carries a state s in a state space S
to another state a(s): thanks to a being a symmetry, the two states s and a(s) assign
the same values to all the quantities (i.e. magnitudes) in some salient, usually large,
set of quantities. The question then arises: do s and a(s) represent the very same
physical state of affairs, or scenario—or in philosophers’ jargon: the same possible
world?

The answer, in full generality, is of course: ‘No’. That is: not always. But for a
large enough set of quantities being preserved; and in particular for a theory that is a
‘toy cosmology’ (i.e. a theory whose system of interest is a cosmos, with no external
environment, so that there are no relational quantities whose values are not preserved
by a): there is a tradition of answering ‘Yes’.

Debate then ensues about:
(i) what are the general conditions for the ‘Yes’ answer being correct? and
(ii) what does the ‘Yes’ answer imply about the propriety of—perhaps even the

requirement of—moving to a reduced formalism, i.e. one in which states are taken
as the orbits, in the given formalism, of the action of the symmetry a?5

So, turning to our topic of dualities: we endorse the analogy. We will say, roughly
speaking, that: a theory T is mapped by duality d to a theory d(T ) which is ‘the
same’ as T . This will be made precise in various ways. But it is worth stressing now,
in line with the three features (1), (2) and (3) we listed at the start of this Subsection,
that:

(a): We take theories to be initially uninterpreted: so it will not follow from the
existence of a duality map d that T and d(T ) are wholly equivalent (‘state the very
same propositions’).

(b): We make explicit the interpretation of a theory’s formalism: so there will
be interpretation maps I acting on both the theory T and its dual d(T ).

(c): For a given theory, we distinguish different realizations of it, which we call
‘models’. Duality is an isomorphism between such models: an isomorphism that is
often surprising since the models, despite their common core, “look different”.

5A bit more precisely: states would be taken as the union of the orbits for all the symmetries for
which the ‘Yes’ answer is true. For recent work on the debate about (i) and (ii), cf. [8, 22, 57].
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1.2 Bosonization and Other Dualities

In this Subsection, we motivate our choice of bosonization as the illustration of
our schema. We first sketch a spectrum of examples of dualities (Sect. 1.2.1). Then
we describe how bosonization strikes a balance between mathematical rigour and
physical interest, and introduce its main features (Sect. 1.2.2).

1.2.1 Examples of Dualities

Recent philosophical literature on duality and theoretical equivalence has dealt with
three main kinds of examples:—

(a): equivalence between models (in our sense!) formulated in first-order (maybe
many-sorted) logic: e.g. definitional equivalence, Morita equivalence, and-or cate-
gorical equivalence (e.g. [4, 5]);

(b): categorical equivalence of models (in our sense) of classical theories (e.g.
[55, 57]);

(c): dualities between models (in our sense) of quantum theories whose classical
descriptions are very different (e.g. [17, 20, 23, 25, 36, 46, 49]).
The classification (a)–(c) is arranged in increasing order of physical (not mathemat-
ical!) sophistication. Consequently, there is also decreasing mathematical rigour, as
one moves from kind (a) to kind (c):

Kind (a): These examples have the advantage of being very simple, in their reliance
on first-order logic only: and so, the notions of equivalence in question can be defined
rigorously. But in their simplicity, the notions developed, and the examples given,
generally do not seem to have sufficient structure that they could describe in detail
the sorts of examples that physicists would be interested in. (At any rate, the authors
cited do not describe how such logical models can illustrate even the simplest phys-
ical models of, say, classical, source-free Maxwell theory: which is, of course, not
to claim that this is impossible!).

Kind (b): These examples include some important models of classical theories, such
asNewtonian gravitation, general relativity, andYang-Mills theorymodels. But these
examples also have some limitations. (1): To physicists, the example is, typically, not
surprising (e.g. Newtonian gravitation being equivalent to geometrized Newtonian
gravitation). (2): When it is surprising (e.g. [55]), it is not a case of equivalence, but
rather of analogy. Furthermore, (3): categorical equivalence has been criticised by
Barrett and Halvorson [5] for being ‘too liberal’. In our view, the element of ‘sur-
prise’ (see Sect. 2.1) seems to come with models of quantum theories, i.e. examples
of (c):

Kind (c): Typical examples of this kind are dualities between very different-looking
models of quantum field theories, or of string theories (cf. [59]).
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This explains the recent interest, shown by both physicists and philosophers of
physics, in such dualities. Physicists tend to view dualities as powerful epistemic
statements: the epistemic gain being both mathematical and physical. As the math-
ematical aspect: mirror symmetry is the prime example.6 Michael Atiyah has char-
acterised the discovery of mirror symmetry as ‘spectacular’: since it established a
new link between complex geometry and symplectic geometry, later proven (in one
of its simplified versions) by mathematicians [2, p. 83]. As to the physical aspect:
gauge-gravity duality is an important example, which has led to both new theoretical
developments in quantum gravity, and to new experimental results and ideas (like
the explanation of the shear viscosity-to-entropy ratio in a quark-gluon plasma, and
recent applications to cosmology: cf. e.g. [1, 15]). Other examples are T-duality
(related to mirror symmetry) and S-duality: which falls under the same class of dual-
ities as our bosonization example, viz. exchanging Noether charges and topological
charges [7]. An important idea of these dualities is that it is themodels of the quantum
theories which are equivalent, while their classical limits are very disparate (differ-
ing in the number or the size of the dimensions, the matter content, etc.). These two
aspects—physical and mathematical—will be developed in Sect. 2.1’s discussion of
the scientific importance of dualities.

But there is a second reason these dualities interest philosophers of physics: which
the recent literature has emphasised. Namely, these dualities obviously bear on philo-
sophical questions such as the distinction between theoretical and physical equiva-
lence, emergence (of spacetime, and-or other entities), and realism versus structural-
ism. We will return to these questions in another paper.

Agreed: examples of kind (c) also have limitations, as follows. (1): Themodels (in
our sense) are mathematically very difficult; and typically, no exact formulation of
the models that are dual is yet known. So the duality, e.g. in the case of gauge-gravity
duality, is still—despite all the favourable evidence, in various limits etc.—a conjec-
ture. (2): The physics involved is not yet established, since themodels involved either
deal with quantum gravity situations (a regime of energies about which experiment
has so far given no direct clues: cf. [50]), or involve simplifying assumptions about
the world, typically a high degree of symmetry (e.g. supersymmetric quantum field
theory models).

1.2.2 Bosonization Introduced

It is clear, in the light of Sect. 1.2.1, that to illustrate our schema, we should choose an
example that judiciously balances the desiderata: on the one hand, (i): mathematical
precision and established physics, as in kinds (a) and (b); on the other, (ii): scientific
importance, as in kind (c). As we will see in detail in Sects. 4 and 5: bosonization or,
more precisely, boson-fermion duality in two dimensions, is just such an example.

6Despite the name of ‘symmetry’, mirror symmetry falls under what we here call a duality. That
mirror symmetry is a case of duality—of two different models, rather than a single model, being
related—is uncontroversial, and reflected in the literature.
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As to (i): Boson-fermion duality allows a treatment of the quantum theory model
that does not need to rely on techniques of approximation such as perturbation theory.
For this reason, boson-fermion duality explicitly illustrates our schema: the common
core theory can be formulated according to our construal in Sect. 2.2.1, and the two
sides of the duality aremodels in the sense of Sect. 2.2.2. The physics of these models
is not speculative, and these 1+1-dimensional models describe systems that can be
realised in the lab, e.g. as one-dimensional spin chains [29, Chap.2], [3, Sects. 4.3
and 9.4.4].

As to (ii): The scientific importance of the duality is witnessed by three facts. (1):
Bosonization involves rich models of quantum field theories, and not just classical
theories; (2) it is an active area of physics (see e.g. [31, 39]); and (3) it illustrates the
surprise that we discuss in Sect. 2.1, viz. by relating a model of bosons and a model
of fermions.

Bosonization was discovered in two papers by Coleman [9] andMandelstam [45],
which built on previous work on the sine-Gordon and Thirringmodels [21]. Coleman
discovered that the sine-Gordon model (a scalar field whose interaction potential is
the cosine of the field) in 1+1 dimensions was equivalent to the charge-zero sector of
the massive Thirring model (a massive Dirac fermion field with quartic interaction)
in 1+1 dimensions.7 ‘Charge-zero sector’ here refers to the restriction of the physical
quantities of the model to pairs of fermionic fields. Thus Coleman wrote:

... under the assumption that one can only make particle-antiparticle pairs out of the vacuum,
not single particles ... For massless particles in two dimensions, it is quite possible to make a
pair that never separates. Such a pair consists of two particles moving in the same direction.
The wave functions do not spread; they just move on steadily at the speed of light, and the
particles never get away from each other [since there is no other direction in which they
could turn]. If the particles had a mass, or if the world were of greater than two dimensions,
this would not be possible. (p. 2094).

WhileColeman’s analysiswas perturbative,Mandelstam constructed amapwhich
was exact, and went both ways. Not only could a boson be mapped to a pair of
fermions; but also the map could be inverted, so as to map a single fermion to a
coherent state of bosons. The construction was non-perturbative, i.e. it did not use
perturbation theory. This is related to the fact, already recognised by Coleman [9,
p. 2088], that all divergences that occur in perturbation theory can be removed by
normal-ordering the Hamiltonian. Mandelstam also did a canonical treatment of the
model, working out canonical commutation relations between the fields and the cur-
rents constructed from them, using regularisation and renormalisation. Therefore,
boson-fermion duality was proven to be exact.

There are three significant features of this duality: features that both (a) justify
our claim, two paragraphs above, that boson-fermion duality balances the desiderata
(i) and (ii), and (b) bear out the conceptual relevance of the example.

7See Sect. 5.5.1; for the simple, free case, see Sect. 4. Here of course we adopt the usual theoretical
physics usage of ‘model’: cf. the end of footnote 4.
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(A): The duality is exact. That is: it is valid for all physically interesting values of
the parameters, and it does not require the use of perturbation theory. In this respect,
boson-fermion duality is closer to kinds (a) and (b) than kind (c). Yet the models
related as duals are non-trivial (because massive, or massless, and interacting!: see
Sect. 5.5) quantum field theory models—and in that sense they are in kind (c)!

(B) The duality goes both ways. It relates boson operators to fermion operators,
and vice versa. This is, of course, surprising, since these two kinds of operators have
very different properties: bothmathematically (e.g. different statistics) and physically
(they describe particles with distinct properties). We will explain, in Sect. 4, how two
models with such disparate formulations can nevertheless be isomorphic to each
other.

(C) The duality maps the weak-coupling regime of one model to the strong-
coupling regime of the other, and vice versa [9, p. 3027]:

g

π
= 4π

β2
− 1 . (1)

Here, β is the coupling constant of the bosonic model (the sine-Gordon model) and g
is the coupling constant of the fermionic model (the Thirringmodel: for more details,
see Sect. 5.5.1). Clearly, when β → 0, g → ∞. This attests to the physical richness
and, indeed, the non-trivial character of the duality. This weak coupling/strong cou-
pling correspondence has later been found to be a feature of most dualities of kind
(c), i.e. dualities in models of quantum field theory and string theory: especially S-
duality and gauge-gravity duality.8 This richness is the main reason why physicists
are interested in dualities: since they can learn about the strong-coupling regime
of one model (where perturbation theory cannot be used effectively nor reliably,
so that the model is in general much harder to deal with) from the weak-coupling
regime of the other model (where perturbation theory is usually a good guide). For
more discussion of how Eq. (1) contributes to scientific importance, see Sect. 2.1-(2).

Features (A) and (B) are needed in order that the example illustrate our schema
with mathematical precision. We will spell this out in Sect. 5. Indeed, we believe this
is the first conceptual and technical exposition in the philosophical literature of a
duality combining the physical interest of kind (c), with features (A)–(B).

Feature (C) relates to another important topic relating to dualities, viz. that of
emergence. Indeed, a recent theme in the philosophy of physics literature has been the
close connection between duality and emergence.9 A framework for understanding
the connection between dualities and emergence was developed in De Haro [15]: it
was argued that the two notions (duality as isomorphism, and emergence as novel
and robust behaviour relative to a comparison class), while close to each other, also
exclude one another. But we must leave the topic of emergence for another occasion.

8In T-duality and mirror symmetry, it is not the size of the couplings that is inverted by the duality
map but, roughly speaking, the sizes of the spaces.
9On the connection between duality and emergence, see: [23, 48, 54].
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Feature (B) also prompts the question of fundamentality. Coleman himself wrote:

I am led to conjecture a form of duality, or nuclear democracy in the sense of Chew, for
this two-dimensional theory. A single theory has two equally valid descriptions in terms of
Lagrangian field theory: the massive Thirring model and the quantum sine-Gordon equation.
The particles which are fundamental in one description are composite in the other: In the
Thirring model, the fermion is fundamental and the boson a fermion-antifermion bound
state; in the sine-Gordon equation, the boson is fundamental and the fermion a coherent
bound state (1975: p. 2096).

The issue of fundamentality in boson-fermion duality, and in electric-magnetic
duality, has been addressed by Castellani [7]. Her account is, in philosophers’ jargon,
deflationary. That is: she argues that all the manifestations of the fields (as bosonic or
as fermionic; as electric or magnetic) are ontologically equally fundamental: ‘What
the duality specifically implies here, concerns, not mutual composition of the parti-
cles, but rather their different modes of appearance when considering the different
classical limits of the quantum theory, i.e. the dual perspectives’ (2017: Sect. 3.3).

Our construal of duality as an isomorphism, in Sects. 2 and 3, is in agreement with
such a deflationary account. For the content of the theory will be taken to be based
on the common core of the models: and this common core includes both bosons and
fermions, on an equal footing. We will discuss some of these issues in Sect. 3.2.3,
but we will not emphasise this point: (for it was worked out in detail for a general
duality, and illustrated for gauge-gravity duality, in De Haro [16, Sect. 1], under the
heading of ‘physical equivalence’).

2 The Schema Introduced: Theories and Models

In this Section and the next, we develop the treatments of theory, model, inter-
pretation, symmetry and duality, given in De Haro [15, Sect. 1], [16, Sect. 1] (and
foreshadowed in De Haro, Teh, and Butterfield [19]). This Section deals with theory,
model and interpretation; Section 3 will deal with symmetry and duality itself.

We begin with the scientific importance of dualities, and the comparison of dual-
ity with gauge (Sect. 2.1). Then we further specify our notions of theory and model
(Sect. 2.2). Then we discuss: interpretations (Sect. 2.3), representations and isomor-
phisms (Sect. 2.4).

2.1 Duality’s Scientific Importance

Recall from Sect. 1, our overall proposal. A bare theory can be realized (we will say:
modelled) in various ways, like the different representations of an abstract algebra.
These models are in general not isomorphic, since they differ from one another in
their specific structure. But when they are isomorphic, we have a duality.
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To develop this proposal, we begin with four clarifying remarks. Each remark
leads in to the next. The first three defend our taking duality as a notion that is both
logically weak and independent of a theory’s interpretation. The first is, in effect,
just the point that ‘duality’ is a term of art; so one can choose how to use it: and
our choice of a logically weak definition makes for a strong physical notion! But the
second and third are substantive—about the scientific importance of dualities. The
fourth remark is a contrast with the notion of gauge.

(1): A logically weak but physically strong definition:— We agree that at first
sight, it looks profligate to say that there is duality whenever two models are iso-
morphic. For it means there are countless dualities. For example: if a group or an
algebra, endowed with a set of rules for evaluating quantities, can be a bare theory,
any two isomorphic representations will yield a duality, as long as the isomorphism
preserves the values of the quantities. Accordingly, the notion of duality is sometimes
narrowed by adding physical conditions, not just on ‘bare theory’, but also on the
isomorphism between models, e.g. by requiring the isomorphism to link the weak
and strong coupling regimes of the two models [see Eq. (1)]. But we will maintain in
(2) and (3) below that it is best to leave ‘duality’ broadly defined, as we have done:
with such extra conditions being articulated in individual cases as the need arises.
As we will see in Sect. 3.2.2, the strengthening will be given by the kind of physical
degrees of freedom that one wishes to describe. And so, our notion of duality will be
physically strong. In particular, it cannot be argued that two givenmodelswhich share
some structure are dual, unless the common structure is exactly equal to what the
models regard as physical. In short: this apparently profligate verdict can be accepted.

(2): Duality as surprising:— So far we have spoken mainly of logico-semantic
issues, and ignored epistemological ones: we have said what a duality is, but not how
surprising and fruitful it can be. Our case-study, in Sect. 4 et seq., will of course bring
out these issues. It is surprising indeed to learn that a theory we thought of as having
as its quantum particles fermions also contains bosons—and even more surprising to
learn that conversely the theory can be presented in the first place as having bosons,
and then shown to contain the fermions with which we first began. For the moment,
we note three clarifying comments—which are suggested by phrases like ‘a theory
we thought of’, and ‘the theory can be presented’. Each comment leads in to the next.

(i): We usually discover a duality in the context, not of a bare theory, but of an
interpreted theory; for of course we work with interpreted theories.10

(ii): Indeed, we usually work with what we have called ‘a model of the theory’,
indeed an interpreted model. That is: usually, before the duality is discovered, we
have two interpreted models (usually called ‘physical theories’!) which we do not
believe to be isomorphic in any relevant sense.

10Agreed, pure mathematicians sometimes work with uninterpreted theories; and duality is a grand
theme in mathematics, just as it is in physics. But although comparing duality in mathematics and
in physics would be a very worthwhile project, we set it aside. Cf. [10].

http://dx.doi.org/10.1007/978-3-319-64813-2_4
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(iii): Usually, we do not initially believe the two models are models of any
single relevant theory (even of a bare one: i.e. even if we let ourselves completely
suspend our antecedent interpretation of the models). The surprise is to discover that
they are such models—indeed are isomorphic ones.

The word ‘relevant’ in (ii) and (iii) signals the fact that of course ‘isomorphism’,
‘model’ and ‘theory’ are very flexible words. For example: almost any two items can
be considered isomorphic, i.e. as having a common structure, under a weak enough
construal of ‘structure’. Thus physicists might well in some specific context notice
that the two models in question are both groups, or both algebras. But they rightly do
not announce this as discovering a duality: not even if they also notice that the two
groups (or algebras) are isomorphic. They set it aside as irrelevant, since the abstract
notion of group or of algebra is so general that having it identified as a bare theory
in common between the models is scientifically useless.

On the contrary, what is surprising, and scientifically valuable, is to find very spe-
cific, not general, structures in common between different models: especially when

(a) the models as presented (so: as interpreted) are very disparate, and-or
(b) the common structure is not only detailed (like ‘10-dimensional semisim-

ple Lie group’, as against ‘group’) but amounts to an isomorphism of that detailed
structure (like ‘isomorphic as 10-dimensional semisimple Lie groups’).
As noted above, what will give physical theories their specificity, thus making dual-
ity a more powerful tool than its logically weak definition might make it seem,
is the fact that physical theories, even bare ones, come with sets of maps from
groups and algebras to appropriate fields (in the mathematical, not physical, sense!),
i.e. maps that assign values to the physical quantities. These maps are defined at the
level of the abstract structure, but must also be instantiated in each of the models
(according to the relevant sense of instantiation, as either ‘representation’ or ‘real-
ization’: cf. Sect. 2.2.2). And this set of maps is usually so rich, that it often suffices
to reconstruct a model. And so, the fact that duality preserves these maps can be very
non-trivial, and surprising, especially when combined with (a)–(b) above.

This discussion of (a)–(b) returns us to (1) above. We doubt that there can be a
general characterization of when the models as presented are disparate enough, and-
or the discovered isomorphism is detailed enough, for scientific importance. Instead,
one can only articulate in any specific case how the disparity and-or the details are
enough: e.g. because the isomorphism links the weak and strong coupling regimes
of the two models. So it is not worth trying to tighten the definition of ‘duality’ with
conditions beyond the logically weak ones we advocate. One just needs to use one’s
judgment about which cases count as scientifically important enough to analyse.

(3): Examples:— The conclusion of (2) is supported by some famous examples of
duality in physics. Apart from boson-fermion duality, which we already introduced
in Sect. 1.2, it is worth illustrating this with two other examples.

(A): Gauge-gravity duality. In this case, the models differ in the dimensions
they assign to spacetime (d in the gravity model, d − 1 in the gauge model), in
their field content and classical equations of motion (Einstein’s equations coupled
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to matter in the gravity model, the Yang-Mills equations in the gauge model), and
in much more. In this case, the common core consists only in a class of asymptotic
operators and a conformal class of (d − 1)-dimensional metrics. Of course, it is very
surprising to learn that a gauge theory model in d − 1 dimensions, and a model of
quantum gravity in d dimensions, despite their very disparate guises, nevertheless
have the same common core, and represent the same theory. See De Haro [15, 16]
for a discussion in the context of our schema.

(B): Electric-magnetic, or S-duality. This relates two models by mapping the
electric charges of one model to the magnetic charges of the other. Furthermore, it
does so by mapping a small electric charge to a large magnetic charge, analogously
to Eq. (1) (since the charges play the role of couplings, in gauge models). Neverthe-
less, the common structure is the same in the two models, i.e. the quantum theory is
invariant under the replacement of one gauge group by its dual.

(4): A contrast with ‘gauge’:— This discussion of dualities’ scientific importance
brings out a contrast between our treatment of duality, and the notion of gauge.
Physicists sometimes make remarks like: ‘two dual theories are like different gauge
formulations of a single theory’. We agree that this remark is analogous to our view:
indeed, in two ways.

(i): A gauge formulation of a theory has specific structure (viz. the gauge variables)
going beyond that mandated by the ideas (gauge-invariant ideas!) of the theory; just
like for us, a model has specific structure going beyond that mandated by the bare
theory.

(ii): The idea of gauge as ‘descriptive redundancy’ means that two gauge formu-
lations of a single theory must ‘say the same thing’; just like we say that in a duality,
two models are isomorphic, and so (if interpreted: could) ‘say the same thing’.

Butwe submit that this isonly an analogy. There are twodifferences. First,wewant
to allow for cases where the two duals are not physically equivalent (as in Kramers-
Wannier duality, mentioned above): pace the suggestion in (ii). Second (and more
importantly), the extra structure in a model is usually not gauge, i.e. descriptively
redundant: think of how the extra structure in a representation of a group usually
carries physical information (e.g. a representation of the Poincare group carrying
mass and spin information). Again, as stressed in (2) above: the surprising and sci-
entifically important discovery is that in two models, with apparently very disparate
structures, there is in fact an exact correspondence of structures. We shall return to
these two differences in Sect. 3.2.4, comment (3).

2.2 Theories and Models

In this subsection, we add details about the ideas of a bare theory and its models,
already introduced in Sect. 1.
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2.2.1 Bare Theories

Following De Haro [15, 16], we take a bare theory to be a triple T := 〈S,Q,D〉
comprising a structured set of states, a structured set of quantities, and a dynamics:
together of course with the rules for evaluating the physical quantities on the states.
(We will later discuss symmetries, which we will take as automorphisms a : S → S
of the set of states; or as the dual maps on the set Q of quantities.)

Two immediate points of clarification:—
(1): We stress that, despite the physical connotations of the words ‘states’,

‘quantities’, and ‘dynamics’, a bare theory is not interpreted physically. Interpreta-
tion comes later (cf. Sect. 2.3). Thus it will help to think of a bare theory as given by an
entirely abstract algebra of quantities, together with a similarly abstract state-space
and dynamics. For example, the quantities might be (the self-adjoint elements of) an
abstract C*-algebra A, the state-space might be determined by A, viz. as the positive
linear functionals on A, and the dynamics might be an arbitrary automorphism of A.

(2): Indeed, it will help to think of a bare theory yet more generally. The reason
is that most of what we need to say throughout Sect. 2, about theories and accord-
ingly about their models, is independent of taking a bare theory as a triple—even an
uninterpreted one a la (1). It depends only on a bare theory having two features:

(a) being uninterpreted, yet ready to be interpreted as a physical theory
(hence the idea of the abstract set of states, quantities etc. ‘standing ready’ for inter-
pretation);

(b) being augmentable, i.e. able to be supplemented with extra (again: unin-
terpreted) structure, in various ways, yielding different realizations, which we will
call ‘models’: (to which we will turn directly, in Sect. 2.2.2).
Clearly, a theory does not need to be a triple 〈S,Q,D〉 in order to have features (a)
and (b). It could, for example, be a theory in logicians’ traditional sense of a deduc-
tively closed set of formulas in a formal language: such a theory is uninterpreted,
and can be augmented in many ways, for example just by adding an extra set of
formulas and then closing under deduction. (Here we again connect with the Hilber-
tian and logical empiricist tradition of formulating physical theories axiomatically,
mentioned at the start of Sect. 1. But we must postpone discussion till Sect. 2.4.)

2.2.2 Models

So we define a model M of a bare theory T to be a realization of T . The word
‘realization’ can be taken in two senses:—

(i): In the broad sense of amathematical instantiation: i.e. amathematical entity
having the structure of the theory, and usually of course some specific structure of
its own (cf. (2)(b) in Sect. 2.2.1). Thus if T is a theory in the logicians’ sense of
a deductively closed set of formulas, a realization is an entity that in some sense
‘satisfies’ all the formulas of T , and usually of course some formulas of its own. So
any deductively closed superset of T would count as a realization of T ; but so of
course would any model of T in logicians’ usual sense of ‘model’.
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(ii): In the mathematical sense of ‘representation’, as in representation theory.
This requires T to have some structure, so that a representation is a homomorphism
(of that structure) from T to some given, structured object. Since homomorphism
need not be isomorphism, the homomorphism’s range—the structured object that
represents—may have only a ‘coarse-grained’ version of T ’s structure. But like in
(i): since the representing object is ‘given’, it will also have specific structure of
its own. (Recall the two kinds, (A) and (B), of ‘extra detail’ in Sect. 1.1.) Again,
the obvious examples are when T is an abstract group or algebra, endowed with a
set of rules for evaluating quantities, and a model is a group/algebra representation:
for example a subgroup of the general linear group on a complex vector space,
GL(n, |C), endowed with a set of maps to the complex numbers, invariant under
similarity transformations, e.g. the group characters.

In our specific example of duality, bosonization (Sect. 4 et seq.), we will use the
second more specific notion, i.e. representation, (ii). But again: much of what we
say in this Section needs only (i): the first, more general, sense of realization. And
we believe that this notion applies more generally, to the dualities in quantum field
theory and string theory: gauge-gravity duality [16], mirror symmetry, T-duality, and
S-duality; cf. Sects. 2.4 and 5.4.

2.2.3 Notations for Models; Model Roots and Model Triples

It is helpful to have a schematic notation for models that exhibits how they augment
the structure of a theory with specific structure of their own. This will also introduce
some jargon which will be important for us.

One’s first thought is to write the model as the ordered pair of the theory and its
specific structure, M̄ say: M = 〈T, M̄〉. But we need to reflect the fact that (in almost
all cases) the way that a model incorporates the theory’s structure is not by simply
containing a ‘copy’ of the theory ‘beside’ its specific structure M̄ : but instead, by
using M̄ to build a realization—in one or other of Sect. 2.2.2’s two senses—of the
theory’s structure. Again, the obvious example of group representations illustrates.
We should not think of a matrix representation of, say, the symmetric group SN as
containing a copy of SN ‘beside’ its specific structure of a vector space V and N !
linear maps on V ; (or maybe less than N ! maps—recall that a representation need
only be a homomorphism). Rather, V and the (upto!) N ! linear maps realize, give a
‘concrete copy’ of, SN .

Similarly for examples of dualities in physics, including our example of bosoniza-
tion. In a typical physics example, the specific structure M̄ consists of a set of fields,
endowed with a set of symmetries, a dynamics for the fields, and a set of states
of the fields. (So here, fields play the role of quantities in our conception of theo-
ries as triples, though of course not all fields are observable: in quantum theories,
self-adjoint.) These fields etc. are used to build a ‘concrete copy’ of the bare the-
ory’s structure (or maybe a ‘coarse-grained’ copy). In our own example: a concrete
copy of the enveloping affine Lie algebra or Kac-Moody algebra (see Eq. (41) in

http://dx.doi.org/10.1007/978-3-319-64813-2_4
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the Appendix), which is the algebra of which both the bosons and the fermions are
representations.

So a better notation that reflects how M̄ is used to build a realization of T is to
write: M = 〈TM , M̄〉. The occurrence of T in the notation encodes that the model M
is indeed a model of T . But the subscript M on T reflects that the specific structure
M̄ is used to realize T . In short, TM is not ‘given before’ M itself: rather, TM realizes
T—in one or other of Sect. 2.2.2’s two senses—by making use of M̄ .

So one should not think of the model as an ordered pair made from two already-
given items TM and M̄ . Rather, the decomposition M = 〈TM , M̄〉 is conceptual.11

It will be convenient to have a word for TM , the ‘part’ of M that realizes T . We
call it themodel root. It will also be convenient to have a notation for the model root
that does not mention T , just for simplicity in discussions where it is obvious that
one theory T is in question. We usem. Thus a theory T can have various models and
model roots, Mi and mi , where i is in some index set I . This notation m, i.e. without
mention of T , will be useful in Sect. 2.4.

This discussion carries over intact to the more detailed conception of a theory as
a triple, T = 〈S,Q,D〉. We write a model, not as a pair, but as a quadruple:

M = 〈SM ,QM ,DM , M̄〉 =: 〈m, M̄〉 , (2)

wherem := TM := 〈SM ,QM ,DM 〉will be dubbed themodel triple, aswell asmodel
root. As before, M̄ is the specific structure that distinguishes onemodel, and somodel
root/triple, from another; and it is M̄ that is used to build the model triple.

This jargon of model root, and model triple, will be important in relation to
our proposed schema for duality, that a duality is an isomorphism of models. For
this isomorphism is of course isomorphism as regards the bare theory’s structure,
rather than any other structure: in particular, this isomorphism sets aside the specific
structure (even though the model’s realizing the bare theory is built from its specific
structure). Accordingly, we will often talk of duality as an isomorphism of model
roots; and also, when a theory is conceived as a triple, as an isomorphism of model
triples.

Finally, it will also be convenient (especially in Sect. 3.1) to have notation for a
model considered in itself, not by comparison with the bare theory of which it is a
model. A model is of course itself also a triple of a set of states, quantities and a
dynamics: i.e. its own states etc., not that of the bare theory. And we will again use
the overbar to indicate what is specific to the model. So we write: M = 〈S̄, Q̄, D̄〉.

This prompts the question:what is the relationbetween theunbarred itemsS,Q,D
that make up a bare theory T , and the barred items S̄, Q̄, D̄? We will not attempt a
general answer to this: we will not need one, and indeed we doubt that there is one.
But bearing in mind the prototypical cases of representations of groups or algebras

11Besides, in physics examples the actualmathematical structure of amodel is often very rich, e.g. in
gauge-gravity dualities the metric of a (d + 1)-dimensional spacetime will belong to the specific
structure M̄ , but this metric will be a fibration over the metric of a d-dimensional spacetime, which
belongs to TM : see [15, Sect. 2.1], [16, Sect. 2.2].
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(e.g. representations of the Poincare or conformal algebras which add a specific
field content), the tempting, broad answer is that the barred items “are bigger”/“have
more structure”. (This is another aspect of the analogy between duality and gauge,
despite the contrasts we stressed in remark (4) at the end of Sect. 2.1: both for two
dual models and for a gauge formulation of a theory, there is the intuition of “being
bigger”/“having more structure”.)

In the example of boson-fermion duality, as we will see in Sects. 4.1 and 4.2, the
theory consists of a specific enveloping algebra of the affine algebra (see Eq. (41) in
the Appendix), together with a representation space for this algebra and appropriate
functionals to the real numbers, which represent the quantities that (in the interpreted
theory) become the physical quantities. But the models contain a complex variable z,
which represents two-dimensional spacetime. Using this variable, one can construct,
from the operators of the algebra, the bosonic (Klein-Gordon) or fermionic (Dirac
fermion) field of the bosonic and the fermionic model, respectively. We shall argue
in Sect. 5.4:(c) that, at the level of the bare theory, the specific dependence of the
fields on the spacetime variable z has no particular significance, and is not needed:
so that this suggests the formulation of a more general theory, with less structure.

2.3 Interpretations of Theories and Models

So far, so abstract! Both theories and models have so far been bare, i.e. uninterpreted.
We now sketch howwe envisage their physical interpretations.We will adapt the ele-
mentary ideas of the Frege-Carnap-Lewis framework for semantics [6, 27, 41]. This
will be easy work: two interpretation maps, I Int and I Ext, will map from our theories
and models, to ‘meanings’ and to ‘the world’ respectively. These maps will later be
useful for discussing symmetries (in Sect. 3.1.2).

We recall that according to the Frege-Carnap-Lewis framework:—
(i) A word gets assigned: first, an intension (Carnap’s word: Frege’s is ‘Sinn’,

or in English, ‘sense’: roughly, ‘linguistic meaning’); and second, an extension (Car-
nap’s word: Frege’s is ‘Bedeutung’, or in English, ‘reference/referent’: roughly, ‘the
object or worldly item mentioned’). Roughly speaking: our interpretation maps, I Int

and I Ext, will assign intensions and extensions, respectively.
(ii) A word’s intension is assigned to it, once and for all (making the simpli-

fying idealization that all words are univocal, and their linguistic meanings do not
change). But a word’s extension is assigned to it, relative to a possible world and to
other features of the context of use that together determine the reference. For exam-
ple, the reference of ‘the tallest Swede alive today’ depends not just on the possible
world, but also on the day of use. And in general, the set of features that together
determine the reference is large and open-ended (cf. [43]).

(iii) A singular term (such as a proper name ‘Aristotle’ or a definite descrip-
tion ‘the capital of Denmark’) has as its extension, its bearer (in these examples: the
man, the city Copenhagen); while a one-place predicate (such as ‘...walks’) has as
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its extension its set of instances (the set of walkers at the possible world and time
in question); while similarly, a two-place predicate (such as ‘... loves ...’) has as its
extension its set of instances, i.e. the set of ordered pairs where the first loves the
second (at the possible world and time in question), e.g. 〈Romeo, Juliet〉; and so on
for predicates with three or more places.

(iv) Compositional rules describe how to assign intensions and extensions to
grammatical phrases and thus to complete sentences, in terms of the intensions and
extensions of the component words. For example, ‘Johnwalks’ is assigned, at a world
W and time t , the extension True (as against False) iff the reference of ‘John’ for
(W, t) is in the set of walkers for (W, t).

To adapt these ideas, (i) to (iv), to our theories and models, there are two points to
bear in mind. They seem to be stumbling blocks, or sources of confusion. But they
are easily surmounted and dispelled.

(a): Notice how the ideas above express contingency and transience: by pos-
tulating a background set of possible worlds and times, they secure that a sentence’s
truth-value can be contingent (vary across the worlds) and transient (vary across the
times). In philosophical discussion of physics, contingency and transience are often
expressed in a corresponding way: the theory has many solutions, and typically a
solution changes with time. This is often expressed using the word model: a state
at a time, or a temporal sequence of states (a trajectory through the state-space) is
called ‘a model of the theory’. Thus recall that this was connotation (i) at the start
of Sect. 1.1. The stumbling block is of course that since Sect. 1, we have reserved
‘model’ for a very different use: for what many would call ‘specific theory’, i.e. for
a notion that encompasses many solutions throughout time. But we take it that one
can surmount this stumbling block, and avoid confusion, just by recognising our
stipulated usage.

(b): The ideas, (i) to (iv), were of course developed to give semantics for lan-
guage about ordinary objects, such as people and towns, like Aristotle, Romeo and
Copenhagen. But when one considers one of Sect. 2.2’s theories or models, one is
hard pressed to find mention of objects: at least, of objects in the plural. For undoubt-
edly, ‘most of the talk’ in the theory ormodel is about the various states and quantities,
about which so many details are given. But these are surely not objects, but rather
properties. Namely, properties of the one object—the physical system itself—being
theorized about. Agreed: if the system is composite, one naturally regards its com-
ponent systems as objects in their own right.12 But the main point remains: most of
the talk in a theory or model is about (numerically quantifiable) properties, and their

12Also agreed: it is common, and mathematically natural, to consider the set S of all states, with
quantities as extra structure on S: e.g. in classical mechanics, as real-valued functions on the phase
space S, and in quantum mechanics, as linear operators on the Hilbert space S. But this does not
make it compulsory to treat states as the basic objects in a semantics of a physical theory. For it
is equally legitimate, though less common in textbooks, to start with the set Q of quantities, and
take states as extra structure onQ. And the legitimacy of both these approaches shows that au fond,
a state is an assignment of numerical values to all quantities; and mutatis mutandis a quantity is
an assignment of numerical values to all states. For now, the point is just that if one is asked to
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intricate (quantitative) relationships, not about objects. But this second stumbling
block is, like the first, minor. For nothing prohibits interpretations using just one
object, viz. the system; or just the system and its component subsystems. (Besides,
thoughwewill not go into details: nothing prohibits interpretations treating as objects
what are in fact properties; cf. e.g. [42, p. 429].)

Bearing in mind (a) and (b), we can now spell out how interpretation maps, I Int

and I Ext, assign intensions and extensions, respectively—once we are given a bare
theory T , or a bare model M . We will discuss the assignment to an element of the
set of quantities: i.e. for T , an element ofQ in the triple T = 〈S,Q,D〉; and for M ,
an element of Q̄ in the triple M = 〈S̄, Q̄, D̄〉. (Recall from the end of Sect. 2.2.3 that
Q̄ is all the quantities in the model, and is intuitively ‘larger’ than QM , which is the
realization of T ’s Q in the quadruple M = 〈SM ,QM ,DM , M̄〉.) But to stress that
this element is uninterpreted/abstract, we will call it a, not Q. It will be obvious how
the corresponding assignments get made for an element interpreted as a state, or as
a dynamics.

For I Int, the idea is: I Int assigns to an element a of T or M , a physical quantity
understood in general terms. For example, a could be an element of an abstract C*-
algebra, abelian for classicalmechanics andnon-abelian for quantummechanics.And
I Int(a) could be the quantity, position: which in philosophical terms, is a propertywith
numerically measurable degrees. Or perhaps I Int(a) is, more specifically, position in
the x direction, using such-and-such point as spatial origin, and using axes and
length-unit thus and so.

Two comments are in order, here. First: We thus envisage a ‘Platonic realm’
of numerically measurable properties as the codomain of the function I Int. But our
‘realism’ about quantities is milder than it might appear; and anyway, nothing in
what follows will depend on it. In particular, (i): nothing will depend on our taking
intensions to encode conventional choices such as spatial origin, axis-direction and
length-unit. Besides, (ii): we do not need ‘trans-theoretic identity’ for quantities.
That is, a quantity like position need not be ‘the very same quantity’ in different
theories: especially if they are radically different, e.g. classical mechanics and quan-
tummechanics. Despite the single word ‘position’, I Int(a) can be different quantities,
according as a is in an abelian, or non-abelian, C*-algebra.

Second:Note thatwe do not need to be precise about the exact domain of definition
of I Int. For we are only sketching how we envisage interpretation proceeding; and
there is of course a great deal of convention about how to formalize both T and M ,
and thus about what is the exact domain of definition of I Int.

For I Ext, the idea is similar, except that we need to allow for the fact that extensions
are assigned relative to a possible world and to all the other features of the context
of use that together determine reference. Interpreting any theory or model T or M
means taking it to be used to describe some empirical phenomena: i.e. taking there

classify states and quantities in either of the philosophical categories of ‘object’ and ‘ property’,
undoubtedly one should classify both states and quantities as properties.
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to be, in an appropriate possible world, a context of use with a rich enough set of
features to determine reference for the elements of T or M .13

For example, let a be again an element of an abstract C*-algebra: say, an abelian
one, because T is a bare theory that is to be interpreted as classical mechanics.
Suppose that the possible world W contains two classical point particles; and we
take T to be used in a context sufficiently rich that a successfully refers to the
position of the more massive particle; or perhaps more specifically, its position in
the x direction, using such-and-such place inW as spatial origin, and using axes and
length-unit thus and so. Then relative to W and this assumed context of use, I Ext(a)

is defined to be: the heavier particle’s position.

2.4 Isomorphisms: Defining Theories by Abstraction
from Models

So far, we have taken a theory T as given, and then considered its models M . In this
Subsection, we note that one can argue in the opposite direction: i.e. one can approach
defining a theory starting from a class of models. The idea is a widespread one: to
define a notion (here, a theory) as those features in common between a suitably varied
class of examples (here, models).14 This is what earlier we called the ‘common core’
of the models (in Sects. 1.1-(c), and 1.2.2, 2.1-(3)).Wewill begin within our previous
perspective, i.e. with a theory as given, to introduce notation; then we will sketch
how to define a theory, ‘arguing in the opposite direction’.

So recall from Sects. 2.2.2 and 2.2.3 that a bare theory T can have various models
and model roots, Mi and mi , where i is in some index set I . These ‘realize’ the
theory, in the senses (‘instantiate’ or ‘represent’) discussed in Sect. 2.2.2. But they
are in general not isomorphic to each other, nor to the theory: we in general do not
havemi

∼= m j
∼= T . And even if there is an isomorphism: it is not an identity, because

each mi is a realization of T built using the model’s specific structure M̄i : it is not a
‘pure copy’ of T .

13We say ‘appropriate’ so as to signal that of course, for any T or M , not every possible world has
a context rich enough to determine reference for all T ’s or M’s elements. Indeed: for many worlds,
all their contexts will determine reference for none of T ’s or M’s elements. For example, take T
or M to be supersymmetric theories, and a world with no supersymmetric physics. So whatever
our precise definition of the domain (i.e. set of arguments) of the map I Ext, the map will surely be
partial, i.e. undefined on some, maybe the majority, of its arguments. But that is no problem. Formal
semantics and philosophy of language in the Frege-Carnap-Lewis framework have long had various
proposals for how to treat words and phrases that lack extensions (called ‘bearerless terms’); and
these proposals can be adapted to our T or M .
14This line of thought is not only widespread, but has a long tradition: for thousands of years
in philosophical accounts of abstraction; and for a hundred and fifty years in mathematics, with
e.g. Frege’s proposal to define notions as equivalence classes (e.g. a direction as an equivalence
class of parallel lines).
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Supposing there is an isomorphism between a model root mi and the theory T ,
we denote it by fi : mi → T , i ∈ I . Of course, mi is in general not a single set,
but an n-tuple or family of sets: often endowing some base set in the family with
structure, e.g. the structure of an algebra. In particular, with a theory taken as a
triple, T = 〈S,Q,D〉, each mi is a triple mi = 〈SMi ,QMi ,DMi 〉. So the domain
and codomain of fi are triples, so that fi is actually a triple of maps that map
respectively: states to states, quantities to quantities, and dynamics to dynamics.15

We will, however, not need to indicate this in our notation.
Likewise, let the maps fi j : mi → m j (i, j ∈ I ) denote isomorphisms—when

they exist—between twomodel roots. But again, our notationwill not need to indicate
the precise domains and codomains of these maps.

Now in the opposite direction. Suppose we are given, not a theory T , but a set of
models indexed by I : we write this set as {Mi : i ∈ I }. Similarly, we write the set
of model roots indexed by I as {mi : i ∈ I }. Thus we are not assuming that these
models, or these model roots, are given as realizing a theory. But we do assume
that the model roots (and the models) have some kind of structure, so that it makes
sense to say that some pair of model roots is isomorphic with respect to that kind of
structure. The idea now is to define a theory as ‘what is in common’ among a suitable
set of model roots; where ‘what is in common’ will be expressed as an equivalence
class of an appropriate equivalence relation.

The most obvious implementation of this idea is to define equivalence as just
the given notion of isomorphism that we assumed applies to the model roots. Thus
we might define two model roots mi , m j (i, j ∈ I ) to be equivalent, mi ∼ m j , just
in case there is an isomorphism fi j : mi → m j between them. Then the proposal
would be: a theory is an equivalence class under this equivalence relation. Recall
for example the way in which Frege [26, Sects. 64–67], defined a direction as an
equivalence class of straight lines under the relation of being parallel.

But if we apply this proposal to model roots, it has the trivial consequence that
all model roots of a theory thus defined are isomorphic. And as we have discussed
above, we must allow a theory to have non-isomorphic model roots.16

So the obvious implementation of the initial idea stumbles. If we want to define a
theory as ‘what is in common’ among model roots, and express ‘what is in common’
as an equivalence class, then we need amore judicious—no doubt, a weaker—choice

15The first two maps will be isomorphisms, the last an equivariance condition: we will say more
about this in Sect. 3.2.1.
16Similarly, if we apply this proposal to models: all models of a theory thus defined are isomorphic.
Of course: we expect that since a model M has specific structure M̄ going beyond its model rootm,
isomorphism for models will in general be stronger—i.e. lead to smaller equivalence classes—than
does isomorphism of model roots. But in this Section we will not need to linger on this model
versus model root contrast. For our main concern is defining a theory using isomorphism of model
roots. As we will argue below (at the end of this Subsection), there is a natural constraint that model
roots must be sufficiently varied. For mistaking the presence of accidental similarities between the
model roots one happens to have at hand for necessary similarities between all the model roots of
the theory one is trying to define, leads to unnecessarily, or perhaps undesirably, restrictive theories.
This is a fortiori true of the models Mi of the theory: since the specific structure M̄i is specific to
Mi , and so in general not shared with the another model.
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of equivalence relation than isomorphism. We will not go into details about how to
make this choice. We doubt that there are general rules. But we note that it will be
guided by two desiderata:

(i): our previous understanding (maybe partial understanding) of the theory we
are trying to define: the choice is meant to pick out just the structure of the theory
we intuitively intend;

(ii): our expectation that the model roots will end up being representations, in
themathematical sense, of the theory thus defined (and so, in general, non-isomorphic
to each other).

We will close by mentioning another constraint. It is partly independent of the
question of choosing an equivalence relation. For it is about the membership of the
class of models or model roots one begins with, rather than the judicious choice one
must make of an equivalence relation over it.

Namely: if this whole approach to defining theories is to work—i.e. is to define
theories of the kind we intended in our original conception—then the model roots
must be sufficiently varied that there are no ‘accidental commonalities’ between
them, which would then be inadvertently encoded in the theory defined as an equiv-
alence class—thereby limiting the theory’s possibilities of representation. The point
is familiar, e.g. from Frege’s example. If one imagines the lines can be coloured, then
Frege’s approach to defining direction needs the lines to vary in colour sufficiently.
For if all the lines in a given parallelism equivalence class were the same colour,
Frege’s definition of the corresponding direction, viz. as that class, would inadver-
tently be ambiguous between (i) the direction, as we originally intended it, and (ii)
the unintended common colour. Hence our mentioning, in the opening paragraph of
this Subsection, ‘a suitably varied class of examples’.

We will not go into details about this constraint. But we stress that obviously,
it is substantive. For recall how on the original ‘theory-first’ approach in Sect. 2.2,
we stressed that a model root m = TM is not a ‘pure copy’ of the theory T , but
is built from the model M’s specific structure M̄ . So on the present ‘reverse’, or
‘models-first’, approach: the danger is that if a class of model roots is not sufficiently
varied, they may have considerable specific structure in common (like colour for
Frege’s lines)—which will therefore be inadvertently encoded in theories defined as
equivalence classes of model roots. We will come back to this point in Sect. 5.4.17

17Agreed: one does not always get to ‘choose’ one’s model roots (or models), and so this constraint
cannot always be implemented. Thus there is judgment involved in this process of abstraction, viz. of
(i) howmany, and how varied, the model roots should be, to provide representations of one’s theory,
and (ii) how to make the distinction, for a given model, between model root and specific structure
(since part of the specific structure of a model could be mistaken for e.g. additional information
about the theory). We therefore maintain that this reverse approach, from model roots to theory,
is not deductive but inductive—which brings us back to our Hilbertian theme from Sect. 1. It only
stops when one is happy with the theory—based on whatever independent criteria one uses to judge
one’s theory and models.



328 S. De Haro and J. Butterfield

3 Duality and Symmetry

In this Section, we first develop our treatment of symmetry (Sect. 3.1). This, together
with our discussion in Sect. 2, sets us up to present (at last!) our schema for duality
as isomorphism of models (Sect. 3.2).

3.1 Symmetries of Theories and Their Models

Wementioned symmetry in Sect. 1.1’s closing analogy between a symmetrymapping
a state to a state that is ‘the same’, and a duality mapping a theory to a theory that is
‘the same’. But we now can say more about symmetries, using: (A) our distinction
between theories and models (from Sect. 2.2); and (B) our interpretation maps (from
Sect. 2.3). We take up these topics in Sects. 3.1.1 and 3.1.2, respectively.

About (A), our main point will be that the symmetries of a bare (or indeed, an
interpreted) theory, and the symmetries of a model of it, are in general overlapping,
but distinct, sets. In particular, the symmetries of a theory can be a proper subset of the
symmetries of its model: and beware—this inclusion is in the opposite direction from
that for the other, more common, use of ‘model’, viz. as a solution, or representative
of a solution, of a theory.

About (B), our main point will be that a symmetry must ‘commute’ in an appro-
priate sense with interpretation. Both these points, and our other ones, will be uncon-
troversial.

3.1.1 Symmetries of Uninterpreted Theories and Models

Recall the usual conception of symmetry as a map a on states that preserves the
values of a salient, usually large, set of quantities: the state s and the image-state
a(s) have the same values for quantities. This prompts three immediate comments.

(i): Agreed, it is also usual to think of a symmetry as a map on quantities that
preserves values on a salient, usually large, set of states: i.e. for a given state, the
value of the argument-quantity equals the value of the image-quantity. But there is
no conflict here: the two conceptions are related by duality—in the mathematical,
not physical, sense! That is: one map is the (mathematical) dual of the other.

In more detail: given any map a : S → S, we can define its dual map (not to be
confused with a ‘duality map!’) on quantities, a∗ : Q → Q, by requiring that for any
s ∈ S and Q ∈ Q: 〈a∗(Q), s〉 := 〈Q, a(s)〉. And similarly, starting with quantities:
given anymap a : Q → Q, we say that its dual map on states, a∗ : S → S, is defined
by requiring for all arguments: 〈Q, a∗(s)〉 := 〈a(Q), s〉.

(ii): Recall the question at the end of Sect. 1.1: do a state s, and its image a(s)
under a symmetry, represent the same physical state of affairs (‘possible world’)?
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Our answer therewas, roughly: ‘In general, No: but the ‘Yes’ cases are a natural focus
of interest’. We will return to this when discussing interpretation, in Sect. 3.1.2.18

(iii): We have discussed symmetries as preserving values. But it is common to
also require that a symmetry ‘preserves the dynamics’. Taking a symmetry as a map
on states, this means, roughly: if a sequence of states is possible under the dynamics,
so is the sequence of image-states. That is: if a possible time-evolution is represented
by a temporal sequence of states, with the state at time t being s(t) (a ‘Schrödinger
picture’ of time-evolution), then the sequence a(s(t)) of states is also possible.19 A
corresponding definition can be given for when we take a symmetry as a map on
quantities, and use a ‘Heisenberg picture’ of time-evolution as given by a sequence
of quantities, i.e. by the sequence of their values on a single ‘fixed’ state.

These comments (i)–(iii) bring out two points. The second is longer: it addresses
symmetries of models, pointing out that these are in general overlapping but distinct
(as abstract groups) from symmetries of theories; and that in the special case where
a model triple is isomorphic to the bare theory, the symmetries of the theory can be
a proper subset of the symmetries of its model.

First: it is clear that discussing symmetries returns us to Sect. 2.2’s more detailed
conception of a theory, even a bare one, as a triple comprising a set of states, a set of
quantities and a dynamics: T := 〈S,Q,D〉, together with a set of rules for evaluating
quantities.

Second: it is clear that comments (i)–(iii) carry over exactly tomodels in our sense,
viz. a realization (‘a more detailed version’) of a theory T , with specific structure
of its own. Recall that Sect. 2.2.3 introduced two notations for models in this sense.

18For the moment, we just note that it is also common to think that a symmetry as a map on states
is ‘active’, i.e. the image-state must be a different physical state of affairs (so the question’s answer
is ‘No’), while a symmetry as a map on quantities is ‘passive’, i.e. the image-quantity and the
argument-quantity (each with their common value) describe the single given physical state (so that
now the question’s answer is ‘Yes’).

We will deny this. There is no universal association of symmetry as a map on states as ‘active’,
and symmetry as a map on quantities as ‘passive’. The reason lies, essentially, in the distinction
between a mathematical state and a physical state: (in the jargon of ‘gauge’, the latter is a gauge-
equivalence class of the former). That is: we of course concede that a symmetry as a map on states
is ‘active’, in the sense that it changes the states. That is a tautology: (except for the degenerate case
where the symmetry is given as being the identity map!). But this concession does not imply that
a symmetry as a map on states must change the physical state of affairs represented: for the states
in question could yet be ‘merely’ mathematical. That is: one still needs a further argument why a
difference of these states must imply a difference of physical state (and thus why the question’s
answer is ‘No’). This distinction, between a mathematical and a physical symmetry, was labelled,
in De Haro et al. [20, Sect. 2], with the label (Redundant); and in De Haro [16, Sect. 1.1.2.b], as
(Physical)-(Redundant). It also roughly corresponds to the distinction, in Caulton [8], between an
‘analytic’ and a ‘synthetic’ symmetry.
19If the dynamics is deterministic, we can write s(t) = Dt,t0 (s(t0))where Dt,t0 represents the deter-
ministic dynamics; and then ‘preserving the dynamics’ is equivalent to the commutation i.e. equiv-
ariance condition, a(s(t)) ≡ a(Dt,t0 (s(t0))) = Dt,t0 (a(s(t0))).
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Fig. 1 Commutativity diagram of the symmetry a with the representation map θ

Fig. 2 Commutativity of group automorphism a1 with group homomorphism θ

Both notations will be useful in what follows: the first notation immediately, the
second notation in the next Subsection. (The second notation was simpler: since a
model is itself a triple of its own sets of states, quantities and a dynamics, we wrote:
M = 〈S̄, Q̄, D̄〉. It meanswe can define and discuss ‘symmetry of amodel’ just aswe
did symmetries of theories, e.g. as an automorphism of the state-space S̄ preserving
values of a large salient subset of Q̄.)

Section2.2.3’s first notation distinguishes the realization of the theory’s triple
from the specific structure M̄ , and gives a subscript M to the former to signal that
it is built out of the latter: M = 〈SM ,QM ,DM , M̄〉 [Eq. (2)]. We also wrote this as
M =: 〈m, M̄〉 ,wherem := TM := 〈SM ,QM ,DM 〉 is themodel triple. This notation
brings out that for any theory T and any of its models M , there is a natural condition
for a symmetry a of T to be itself realized in M : for it to have, so to speak, a
‘shadow’ in the model M , i.e. in the model triple. This condition is that a diagram
should commute, and is not automatic.

To state this condition, however, we need a bit more notation about realization.We
will write it as a map θ. And we will suppose that in T we treat symmetries as maps
on states, so that a : S → S preserves the value of all quantities in a salient subset,
sayQ0, of the set of all quantitiesQ. Then in the usual case where ‘realization’means
‘representation’, we can take θ as an appropriate structure-preservingmap: from S in
the theory T itself, toSM in the representingmodel triplem = TM = 〈SM ,QM ,DM 〉.
Then the condition in question—that the symmetry a is itself realized in M—is that
there should be a map aM : SM → SM , such that the diagram in Fig. 1 commutes.

To convey this idea less abstractly, think of the simplest case. Let the bare theory
be just a group G1,20 with an automorphism a1 : G1 → G1; and suppose a group
G2 represents G1 thanks to the existence of a homomorphism θ : G1 → G2. So
G2

∼= G1/ker θ. For there to be a homomorphism of G2, h : G2 → G2 (even homo-
morphism: let alone automorphism), that realizes a1 (counts as a1’s ‘shadow’ in G2)
requires commutation: i.e. for all g1 ∈ G1, θ(a1(g1)) = h(θ(g1)). Or as a diagram,
see: Fig. 2.

20Together with a set of maps to the real numbers, to express evaluation of the quantities. But for
simplicity we ignore these maps for the moment.
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In the special case where the model triple is isomorphic to the bare theory, this
discussion of course simplifies. Then the map θ will be an isomorphism, and the map
aM (or h in the toy example of groups)will trivially exist, and both the above diagrams
will trivially commute. In this case, a symmetry of the theory has a ‘duplicate’, or
‘replica’, in the symmetries of the model—so that in effect, the symmetries of the
theory are a subset of the symmetries of the model. We say ‘in effect’ just because
of the different domains of definition: S versus SM . Apart from this ‘in effect’, there
are two comments to make about this special, simplified, case.

(1): First, we note that on the other use of ‘model’ as an individual solution of a
theory, a model is in general less symmetric than its theory—as is often remarked,
with the buzz-word ‘symmetry-breaking’.A solution of a dynamicswith a spherically
symmetric Hamiltonian need not be spherically symmetric; a cubical crystal lattice
with one particular placing of its lattice points, and one particular orientation of its
edges, can be a solution of a dynamics that is translation-invariant and isotropic; and
so on. So: the subset-inclusion in our case above is in the opposite direction from
that holding for the other use of ‘model’.

(2): Besides, ‘subset’ here will usually mean proper subset. That is: a model’s
specific structure M̄—its ‘content’ that goes beyond its being a model/realization
of T—will mean the model has symmetries additional to those that are ‘duplicates’
of the symmetries of T . And we expect that if these additional symmetries are
well-defined on the model triple, or if they naturally induce a symmetry there, that
symmetry is trivial, i.e. just the identity map on the model triple. Our prototypical
cases of representations of a group or algebra give examples. Perhaps the simplest
is as follows. Let T be the real numbers IR; and let M be the complex numbers |C
which of course represents IR as the real axis, i.e. the complex numbers with zero
imaginary part, {z ∈ |C | z = x + i0, x ∈ IR}. So this latter set, the real axis, is like
the model triple. Then M has the symmetry of complex conjugation z 
→ z̄ which is
indeed well-defined on the real axis: but there, it is just the identity map.

And there are examples in interesting cases of dualities. In gauge-gravity duali-
ties, De Haro [18] showed that a certain subgroup of the diffeomorphism group of
the gravity model of the theory (roughly, the diffeomorphisms which preserve the
asymptotic boundary conditions) was ‘invisible’ to the gauge model of the theory, in
the sense of not representing any difference on that model: and so these diffeomor-
phisms are not in the common core between the two models, and they are trivially
represented on the theory. The same verdict was made in De Haro [16, Sect. 2.2.3]
for the ‘gauge symmetries’ of the gauge side of the duality. These are not visible on
the gravity side: they are symmetries of the formulation of the gauge model of the
theory, and are trivially represented on the theory.

To sum up this discussion of the symmetries of a bare theory, and those of its
models, and of its model-triples: there are really three points here:

(i): A bare theory T is realized—typically: represented in the mathematical
sense— by one of its model triples, m. The model M then consists of m and some
specific structure M̄ ; (cf. Sect. 2.2.3). And representation requires only a homomor-
phism, not an isomorphism. Hence our articulating in this Section the condition—in
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terms of a commuting diagram—for a symmetry of T to be itself realized in m.
(ii): And even if in some given case, the representation is an isomorphism,

i.e. the representing model triple is isomorphic to the theory T , so that any symme-
try a of T will indeed have a ‘duplicate’ or ‘replica’ symmetry in the model triple:
still, we must expect that the model (as against the model triple) has its own specific
structure M̄ . And this specific structure may have symmetries that m, and the theory
T , ‘knows nothing of’: (cf. comment (2) just above).

(iii): Furthermore, different models, and therefore model triples, of a bare the-
ory are in general not isomorphic (as we also discussed in Sect. 2.4). However, our
example of boson-fermion duality, in Sect. 4, will not illustrate this in detail: i.e. all
the model triples will be isomorphic. (But see the comments in Sect. 5.4.)

3.1.2 Interpretations Respect Symmetries

Recall from Sect. 2.3 that once we are given a bare theory T , or a bare model M , the
interpretation maps I Int and I Ext assign intensions and extensions (respectively) to,
for example, an element a of the set of quantities: i.e. for T , an element of Q in the
triple T = 〈S,Q,D〉; and for M , an element of Q̄ in the triple M = 〈S̄, Q̄, D̄〉. (And
similarly for assigning intensions and extensions to states and dynamics.) Thus I Int

assigns to an element a of T or M , a physical quantity, e.g. position (or more specif-
ically, position in the x direction, using such-and-such spatial origin), understood in
general terms. Similarly, I Ext assigns a an extension relative to a possible world W
and the other features of the context of use that together determine reference. For
example, W and the context of use may determine that a is assigned the position of
the more massive of two classical point particles that are in W .

We nowpropose that these interpretationmaps should satisfy appropriatemeshing
conditionswhereby they formcommuting diagramswith symmetrymaps. The reason
is simply that this reflectswhat one usuallymeans by ‘interpretation’ of the formalism
of a physical theory. And this is so whether ‘formalism of a physical theory’ is (in
our senses) a bare theory, or a bare model; and whether ‘interpretation’ refers to
intension or extension.

Thus to take a very simple example: suppose that a state describes three classical
point particles forming a scalene triangle, stationary in an absolute Newtonian space,
and (for more simplicity) that the particles do not interact; and suppose the bare
theory, or model, at issue has spatial translation and rotation as symmetries. Taking
symmetries as maps on states (as usual): these suppositions mean that a spatially
translated and-or rotated state has the same values as the given state, for a large and
salient set of quantities. So far, these suppositions are, officially, at the level of a bare
theory or model—though of course words like ‘point particles’,‘scalene triangle’ and
‘Newtonian space’ suggest interpretation. And indeed: reading these suppositions,
one tends to read them as interpreted, i.e. to unconsciously apply the interpretation
maps I—where I is short for both I Int and I Ext. In any case: applying these maps to
the two bare states, say s and T (s) (‘T’ for ‘transform’ or ‘translate and-or rotate’),
one concludes that for the act of interpretation to respect the given symmetries, the
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interpretations I (s) and I (T (s)) (where again: I is short for both I Int and I Ext) must
have the same values for a large and salient set of quantities—namely, of course, for
the interpretations of the bare quantities. This is exactly the condition that symmetry
and interpretation form a commuting diagram. But to write such diagrams down, we
will need a bit more notation.21

The reasons we need more notation are as follows. So far:
(1): We did not spell out that the domain of each of I Int and I Ext would include

states and quantities and dynamics; so that each of I Int and I Ext is really a triple of
three maps from states to states, from quantities to quantities, and from dynamics
to dynamics. (This is just like an isomorphism fi in Sect. 2.4 being really a triple of
such maps; cf. footnote 15.)

(2): We have not introduced notation for the codomains of the interpretation
maps: for what one might call the ‘realm of intension’, or ‘meanings’, for I Int, and
for what one might call the ‘realm of extension’, or the ‘world’, for I Ext.

(3): Nor did we introduce a notation for symmetry maps defined on the ‘realm
of intension’ or on the ‘realm of extension’. Indeed, we did not yet do this: neither
(a) on the states therein (generally understood, in the realm of intension, and specific
to a particular physical system, in the realm of extension), analogous to the symme-
try maps a : S → S on the states of a bare theory; nor (b) on the quantities therein
(generally understood, in the realm of intension, and specific to a particular physical
system, in the realm of extension), analogous to the symmetry maps a∗ : Q → Q on
the quantities of a bare theory (which aremathematical duals of themaps a : S → S).

To avoid a lot of extra notation, we shall only act on (2) and (3) above. That is:
(2’): We now denote the codomains of the interpretation maps I Int and I Ext by,

respectively: ‘Sinn’ (in honour of Frege’s German word for the realm of intension)
and ‘Bed’ (short for ‘Bedeutung’, which was Frege’s word for referent, such as the
bearer of a name).

(3’): We confine ourselves to treating symmetries as maps on states (treating
them as maps on quantities would be parallel). So we now denote a symmetry on the
states in ‘Sinn’ as a Int, where the superscript Int corresponds to the subscript in I Int.
And we now denote a symmetry on the states in ‘Bed’ as a Ext, where the superscript
Ext corresponds to the subscript in I Ext.
Putting (2’) and (3’) together, we write a state-space in the realm of intension as S Sinn,
and a state-space in the realm of extension as S Bed. So we write: a Int : S Sinn → S Sinn;
and we write a Ext : S Bed → S Bed.

But we shall not act on (1) above: the notation would be cumbersome, and without
compensating advantages. In short: acting only on (2) and (3) above—i.e. introduc-
ing ‘Sinn’ and ‘Bed’, with symmetry maps a Int and a Ext respectively—is enough to
enable us to draw the required commuting diagrams.

21Agreed, to impose this commutation condition for every symmetry and every interpretation is
contentious. It seems best justified when we envisage that the bare theory or model describes the
whole universe; so that for the example of three point particles, there are no other material bodies
in the universe. But in this paper, we do not need to assess exactly when the commutation condition
is justified. See De Haro [16, Sect. 1.3–1.4], especially the condition called ‘unextendability’.
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Fig. 3 Commutativity of the symmetry a with the interpretation map I Int for T

Fig. 4 Commutativity of the symmetry a with the interpretation map I Int for M

Fig. 5 Commutativity of the symmetry a with the interpretation map I Ext for T

We spell these out: first for the realm of intension, then for the realm of extension.
In each case, we first draw the diagram for a bare theory T taken as a triple, T =
〈S,Q,D〉; and then draw the diagram for a bare model M taken as a triple M =
〈S̄, Q̄, D̄〉. (Note that these diagrams do not reflect Sect. 3.1.1’s discussion about the
overlap but distinctness (in general) of symmetries of a theory T , and symmetries of
its model M .)

Thus for the realm of intension, we have: for a bare theory T with state-space S,
the diagram in Fig. 3. For a bare model M with state-space S̄ , we have the diagram
in Fig. 4.

Strictly speaking, we should in diagrams in Figs. 4 and 3 distinguish two inter-
pretation maps—both of which we have in fact written as I Int—according as the
domain of definition is the state-space of a bare theory or of a bare model. But like
in comment (1) above: the precision is not worth the burden of extra notation. And
similarly of course, for the next two diagrams about the realm of extension.

For the realm of extension, we have, at some given possible worldW and context
of use sufficiently rich to determine references (i.e. to avoid the interpretation maps
being undefined on the given arguments): for a bare theory T with state-space S, the
diagram in Fig. 5.

For a bare model M with state-space S̄, we have the diagram in Fig. 6.
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Fig. 6 Commutativity of the symmetry a with the interpretation map I Ext for M

3.2 Duality as Isomorphism of Models

We turn in this last Subsection to our proposal that a duality is an isomorphism of
models of a bare theory. To be precise: it is an isomorphism of model triples of a bare
theory. Indeed, after all the stage-setting of the previous Subsections (!), the proposal
is straightforward. We first give its details, using the notations we have established
(Sect. 3.2.1). In Sect. 3.2.2, we argue that our notion of duality is logically weak but
physically strong. Then in Sects. 3.2.3 and 3.2.4, we turn to how duality relates to
the topics of Sects. 2.3 and 3.1: interpretations and symmetries.

3.2.1 Duality as Isomorphism

Our basic idea is that a duality is an isomorphism between two triples, each com-
prising a state-space endowed with appropriate structure, a set of quantities endowed
with appropriate structure, and a dynamics, consistent with that structure.22 ‘Iso-
morphism between triples’ is of course short for a triple of maps: an isomorphism
between the two state-spaces, and isomorphism between the sets (almost always:
algebras, cf. footnote 22) of quantities, and an equivariance condition on the dynam-
ics.23 In addition, the isomorphismmust commute with the symmetries of the theory,
as sketched in Sect. 3.1.

22As we mentioned in Sect. 2.2.1, ‘appropriate structure’ here refers to: (i) the structure of the
sets of spaces and quantities, (ii) the rules for evaluating quantities, (iii) the structure which the
dynamics satisfies, (iv) the set of symmetries of the theory. We can now be more specific about
these, for the examples of quantum theories, which will illustrate our schema: (ia) the set of states
will be a separable Hilbert space; (ib) the quantities will be elements (normally the self-adjoint,
renormalisable elements) of an algebra; (ii) the rules for evaluating quantities are maps to the
appropriate field: for most quantum theories, the inner product on the Hilbert space, and the usual
rules for evaluating matrix elements; (iii) dynamical evolution will usually be a (unitary) map,
satisfying appropriate commuting diagrams with the other maps in the theory; (iv) the group of
symmetries will comprise the automorphisms of the algebra: and possibly additional symmetries, on
the states and on the quantities. For classical theories, these comments getmodified in familiar ways:
e.g. (ia) would say that the set of states is a manifold, with structure appropriate to e.g. Lagrangian
or Hamiltonian mechanics.
23Our proposal does not depend on the formulation of models as triples. A model root can be
presented in many different forms, and the isomorphism should then preserve the corresponding
structure. Even for triples, one can envisage isomorphisms which do not respect the triple structure,
though they map the model roots isomorphically. Compare Sect. 3.2.2. But it will suffice for our
purposes to restrict to model roots defined as triples, whose structure is preserved by the duality.
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More important is the question of which kinds of triples are related by duality.
Recalling our distinction between bare theories and their more specific models, the
answer is clear: a duality relates two model triples of a single bare theory.

The crucial point here is that the model triple is separated from the model’s own
specific structure, and expresses only the model’s realizing (typically: represent-
ing in the mathematical sense) the bare theory. Recall the notation from Eq. (2) in
Sect. 2.2.3:M = 〈SM ,QM ,DM , M̄〉 =: 〈m, M̄〉,wherem := TM := 〈SM ,QM ,DM 〉
is the model triple. We emphasised already in Sects. 2.2.2 and 2.2.3 that two model
triples are in general not isomorphic to each other, nor to the bare theory. So
the assertion of duality is substantive: it asserts that two model triples are in fact
isomorphic.

But this is not to say that the two models, each ‘considered in their entirety’,
are isomorphic. They each have their own specific structure, and are (in almost all
cases) not isomorphic. Recall our other notation from Sect. 2.2.3 for models ‘consid-
ered in their entirety’:M = 〈S̄, Q̄, D̄〉. Indeed, their being non-isomorphic is usually
part of what makes the duality surprising and (if Nature is kind to us!) empirically
fruitful, i.e. of scientific importance. And ‘the more non-isomorphic’—i.e. the more
disparate the two models, considered in their entirety, are—the more surprising, and
(one hopes) empirically fruitful, is the duality (cf. (2) and (3) in Sect. 2.1).24

We now introduce some notation for dualities as isomorphisms between model
triples. This will require first giving:

(1) some new notation for the value of a quantity on a state, and
(2) a more detailed discussion of dynamics (in both the ‘Schrödinger’ and

‘Heisenberg’ pictures).
Both (1) and (2) can be given wholly independently of our distinctions (i) between
theories and their models, and (ii) between interpreted and uninterpreted theories. So
for the moment, please consider a generic triple of a state-space, a set of quantities,
and a dynamics: 〈S,Q,D〉.25

(1): Suppose we are given a set of statesS, a set of quantitiesQ and a dynamicsD:
〈S,Q,D〉. We will write 〈Q, s〉 for the value of quantity Q in state s. This prompts
two further general points.

24We should put this last point more precisely, since our notion of bare theory is logically weak, with
even a group or an algebra, together with a set of maps to the real numbers, counting as a legitimate
bare theory: (cf. (1) in Sect. 2.1). And it is in general not surprising, nor likely to be empirically
fruitful, to learn that two very disparate models are both groups, or both algebras: (unless the maps
to the real numbers are so disparate that the existence of an isomorphism is not easy to guess). Thus
the point here, more precisely, is that, for a given degree of detail or logical strength in the bare
theory (and the more, the better!): the more disparate its models (considered in their entirety), the
more surprising, and one hopes fruitful, is their both realizing the bare theory. That is: the more
surprising is the duality.
25This simpler idea of a triple was used in our earlier—cruder!—discussion of duality: cf. [20,
Sect. 3.2]. There, the simplicity engendered no errors, since our general description of duality was
but a preamble to a specialist topic: an assessment of gauge symmetries in gauge-gravity duality.
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First: it is common to think of a state s ∈ S as a maximal specification of the
instantaneous properties of the system in question; and a quantity Q ∈ Q as a numer-
ically measurable property of it. In effect, this makes states and quantities nothing
but assignments of values to each other. Second: for classical physics, one naturally
takes quantities as real-valued functions on states, so that 〈Q, s〉 := Q(s) ∈ IR is
the system’s possessed or intrinsic value of the quantity; and for quantum physics,
one naturally takes quantities as linear operators on a Hilbert space of states, so
that 〈Q, s〉 := 〈s|Q̂|s〉 ∈ IR is the system’s Born-rule expectation value of the quan-
tity. But for quantum physics it is often important to consider the non-diagonal
matrix elements of a given quantity/operator Q̂, without requiring this to be ade-
quately encoded in the Born-rule expectation values of various other quantities.
So for a quantum theory—as in the bosonization example of Sect. 4 et seq.!—
we should understand a value written schematically as 〈Q, s〉 to also represent all
the matrix elements 〈s1|Q̂|s2〉. Thus 〈Q, s〉 is a short-hand for an expression like
〈Q; s1, s2〉 := 〈s1|Q̂|s2〉,26 i.e. Q is regarded as a map: S × S → |C.

(2) We turn to the dynamics D, i.e. a specification of how the values of quanti-
ties change over time. We will keep the discussion very simple. First, we assume
the dynamics is deterministic: also in quantum theories, despite the threat of
Schrödinger’s cat. Then it can be presented in twoways, for whichwe adopt the quan-
tum terminology, viz. the ‘Schrödinger’ and ‘Heisenberg’ pictures; (though the ideas
occur equally in classical mechanics: for example the remark, frequent in the text-
books, that in Hamiltonian mechanics time-evolution can be regarded as a sequence
of canonical transformations, is in effect a statement of the Heisenberg picture). But
we shall not need to distinguish otherwise between the different detailed formalisms
for dynamics, such asHamiltonian versus Lagrangian, and the path-integral. Besides,
we will adopt for simplicity the Schrödinger picture.

So we say: DS is an action of the real line IR representing time on S. There is
an equivalent Heisenberg picture of dynamics with DH , an action of IR representing
time on Q. The pictures are related by, in an obvious notation:

DS : IR × S � (t, s) 
→ DS(t, s) =: s(t) ∈ S iff

DH : IR × Q � (t, Q) 
→ DH (t, Q) =: Q(t) ∈ S (3)

where for all s ∈ S considered as the initial state, and all quantities Q ∈ Q, the values
of physical quantities at the later time t agree in the two pictures:

〈Q, s(t)〉 = 〈Q(t), s〉 . (4)

With the notations and notions of remarks (1) and (2) in hand, we can now present
the notation for dualities as isomorphisms between model triples. Let M1, M2 be two
models, with model triples m1 = 〈SM1 ,QM1 ,DM1〉 and m2 = 〈SM2 ,QM2 ,DM2〉. We

26Therefore duality will imply unitary equivalence.

http://dx.doi.org/10.1007/978-3-319-64813-2_4
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Fig. 7 Equivariance of duality and dynamics, for states and quantities

can suppose that M1, M2 are both models of a bare theory T . Or we can proceed in
the ‘opposite direction’ discussed in Sect. 2.4: that is, we can suppose that M1, M2

are given independently of a bare theory T , but their model triples (model roots in
the more general language of Sect. 2.4) are isomorphic. Either way, the notation for
dualities is as follows.

To say that the model triples m1,m2 are isomorphic is to say, in short, that:
there are isomorphisms between their respective state-spaces and sets of quantities,
that (i) make values match, and (ii) are equivariant for the two triples’ dynamics
(in the Schrödinger and Heisenberg pictures, respectively). We now spell this out.
Though retaining the Ms in the subscripts is cumbersome, we will do so, in order to
emphasise our main conceptual point: that duality is a relation between model triples
in our sense—it is not between theories, or between generic triples 〈S,Q,D〉 as in
remarks (1) and (2).

Thus we say:—A duality betweenm1 = 〈SM1 ,QM1 ,DM1〉 andm2 = 〈SM2 ,QM2 ,

DM2〉 requires27:
an isomorphism between the state-spaces (almost always: Hilbert spaces, or

for classical theories, manifolds):

ds : SM1 → SM2 using d for ‘duality’ ; (5)

and an isomorphism between the sets (almost always: algebras) of quantities

dq : QM1 → QM2 using d for ‘duality’ ; (6)

such that: (i) the values of quantities match:

〈Q1, s1〉1 = 〈dq(Q1), ds(s1)〉2 , ∀Q1 ∈ QM1 , s1 ∈ SM1 . (7)

and: (ii) ds is equivariant for the two triples’ dynamics, DS:1, DS:2, in the Schrödinger
picture; and dq is equivariant for the two triples’ dynamics, DH :1, DH :2, in theHeisen-
berg picture: see Fig. 7.

Equation (7) appears to favour m1 over m2; but in fact does not, thanks to the
maps d being bijections.

It is already clear that a duality reduces to a symmetry, in the case where there
is just one model, and one model triple, at issue, i.e. M1 = M2 and m1 = m2. We

27See footnote 23 and Sect. 3.2.2 for a brief discussion of more general cases.
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shall return to this topic in Sect. 3.2.4. First, we turn to the questions (i) whether our
notion of duality is too weak (Sect. 3.2.2) and (ii) how it relates to Sect. 2.3 topic of
interpretation (Sect. 3.2.3).

3.2.2 A Logically Weak but Physically Strong Notion of Duality

In Sect. 2.1, we admitted that our definition of duality is logically weak because
there is a duality whenever two models are isomorphic. Thus one might worry that,
whenever two given models share some common structure smaller than the model
triples, they are dual with respect to the substructures they share. In this Section,
we argue that this worry is unfounded, for models that purport to describe physical
systems—which is our concern in this paper. Thus the notion of duality is physically
stronger than it would at first seem. The point will be to distinguish between a
purely formal model versus a physical (although uninterpreted) model. Our schema
is intended for the latter: and it is only the model triples, not their specific structure,
that is physically significant.

Wewill illustrate this in an example. Consider, for simplicity, the followingmodel,
based on the su(2) algebra:

M0 = 〈S0,Q0,D0〉 := 〈SJ ,U (su(2)),C2(J )〉 . (8)

SJ is here the Hilbert space of irreducible representations of su(2) with total quantum
number J . U (su(2)) is the universal enveloping algebra of su(2), i.e. roughly, all
powers of the algebra elements, quotiented by the algebra relations. The dynamics
is the Hamiltonian of the model, which we take to be C2(J ), the second Casimir.

Let us compare M0 with a model M with which it shares a common structure,
and which is based on the su(2) ⊗ su(2) algebra. The state space is: S = SJ ⊗ SK ,
where SJ and SK are the state spaces of the first and the second su(2), respectively.
J is the total quantum number of the first su(2), and K is the total quantum number
of the second su(2). We take the dynamics to be given by the sum of the Casimirs of
the two su(2)’s, D = C2(J ) + C2(K ). This model is written as:

M = 〈S,Q,D〉 =
〈
SJ ⊗ SK ,U (su(2) ⊗ su(2)) ,C2(J ) + C2(K )

〉
, (9)

where U again indicates the universal enveloping algebra.
M0 and M are of course both representations of M0, i.e. M is a representation of

su(2) with as ‘extra structure’ the second su(2). In fact, M0 is isomorphic to M for
the trivial representation with K = 0, i.e. M0

∼= M |K=0.
But M and M0 are not dual for arbitrary values of K [as in Eq. (9)]. To see this, we

rewrite M in a way which makes explicit the common structure they share, i.e. the
first su(2). So, define:

M ′ := 〈m, M̄〉 , (10)
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where m contains the first su(2), and the specific structure M̄ contains the sec-
ond su(2). Explicitly,m = 〈SJ ,U (su(2)),C2(J )〉 and M̄ = 〈SK ,U (su(2)),C2(K )〉.
Thus, m and M̄ are both triples, and they are both isomorphic to M0, in particular
m ∼= M0.

We can summarise the above definitions introducing the following short notation:

M0
∼= m = J

M = J ⊗ K

M ′ = 〈J,K〉 , (11)

where J is short for the first factor of the tensor product and K for the second.
To reconstruct M = J ⊗ K from M ′ = 〈J,K〉, one takes the tensor products of

the states in J andK, takes all the products of the quantities, and adds up the dynamics,
to reproduce Eq. (9).

If we were to say that M = J ⊗ K and its model quadruple counterpart, M ′ =
〈J,K〉, are ‘the same’, then since it is true that M ′ = 〈J,K〉’s model triple and
M0

∼= J are isomorphic: it would follow that M = J ⊗ K and M0 would be dual in
the relevant sense.

But notice that M ′ is not the same as M , nor is it isomorphic to it, because they
differ in what they regard as physically significant (cf. [15, p. 5]). Only the first model
triple, J, is physically significant in M ′, whereas both model triples are physically
significant in M . Thus there can be no isomorphism between M and M ′ as candidate
models of physics, for they differ in their physical content.

In other words, the difference is in a tensor product model presented as such
(i.e. M = J ⊗ K) versus a model quadruple that has as model triple the first factor
J, and as its specific structure the second factor K.

This argument reinforces the point that it is not necessary, nor desirable, to define
bare theories as equivalence classes of models. This means that the condition to have
a duality is only that two model triples be isomorphic: but the model triples need not
be isomorphic to the bare theory, only homomorphic to it. And since, as we have
just seen, the isomorphism between dual models is essentially unique (i.e. it is not
possible to weaken the isomorphism to get dual structures, without changing their
physical content), there is no gain in requiring that duality must also involve the
theory. If one starts with a bare theory which is weaker than two isomorphic model
triples that represent it, it may be possible to strengthen it so as to match the two
model triples: but there is no gain in this. So, it is best to keep the notion of bare
theory physically weak, and the notion of duality physically strong.

We end with a contrast of the notions of duality in physics and mathematics. In
mathematics, just as in physics, ‘duality’ does not have a fixed meaning; however,
all the examples of duality involve just two theories. More precisely, the duality
operation generates the two-element groupZ2. This is not so in the physics literature,
where duality can involve more than two models, and the duality group can be rich.
For example, the S-duality group of electric-magnetic duality is SL(2,Z), and string
theories realize so-calledU-duality groups,which involve orthogonal and exceptional
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groups. Our schema allows for dualities amongmanymodels, and so it is closer to the
notion in physics. This also strengthens the analogy between duality and symmetry,
mentioned in Sect. 1.1-(2).

3.2.3 Duality and Interpretation

So far, our discussion of interpretation has concerned a single theory or model. Thus
recall that Sect. 2.3 introduced interpretation maps I Int and I Ext in a rather informal
way, as mapping from a bare i.e. uninterpreted theory or a bare model, to the realm of
intension (‘Sinn’), or to the realm of extension (‘Bed’), respectively. Then Sect. 3.1.2
laid out how I Int and I Ext are to mesh with symmetry maps. This amounted to a
commutation condition, i.e. I Int and I Ext forming a commuting diagramwith symmetry
maps, which for simplicity we only considered as defined on state-spaces: either on
a bare state-space, or on a state-space in the realm of intension (‘Sinn’), or on a
state-space in the realm of extension (‘Bed’). (Cf. the diagrams in Figs. 3, 4, 5 and
6.) But again, everything in Sect. 3.1.2 concerned a single theory or model.

Since duality is about relations between theories/models, there is, at first sight,
little to say about duality and interpretation. That is: interpretation should simply
proceed independently on the two sides of the duality—for example, we just require
the interpretation-symmetry commuting diagram on both sides of the duality. Indeed:
we said already at the start of Sect. 1.1 that in some cases of duality, the two sides
were clearly not—nor intended to be—physically or semantically equivalent: e.g. the
high and low temperature regimes in Kramers-Wannier duality. And our definition
of duality as formal (viz. an isomorphism of model triples) certainly allows this
idea of ‘distinct but isomorphic sectors of reality’—namely as the codomains of the
interpretation maps on the two sides of the duality.

This verdict—‘there is little to say’—is true, so far as it goes. And of course,
it does not forbid the other sort of case: where the two sides of the duality are
physically/semantically equivalent, i.e. do describe ‘the same sector of reality’. In
our schema, this would be modelled by the interpretation maps on the two sides
having the same images/values in their codomain—so as to give a triangular, rather
than square, commuting diagram.We shall spell this out as regards the interpretation
of (bare) quantities: similar diagrams could of course be drawn for states.

For (bare) quantities being mapped by I Int into the realm of intension ‘Sinn’, the
two sides of a duality describing ‘the same sector of reality’ amounts to the diagram
in Fig. 8.

Fig. 8 The two sides of the duality describe ‘the same sector of reality’, in the realm of intension
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Fig. 9 The two sides of the duality describe ‘the same sector of reality’, in the realm of extension

Similarly: for (bare) quantities being mapped by I Ext into the realm of extension
‘Bed’—relative to some given possible worldW with a context rich enough to deter-
mine references, of course—the two sides of a duality describing ‘the same sector
of reality’ amounts to Fig. 9.

So far, so straightforward. But the above verdict is a bit quick: there are two further
points to make.

(1):What determines equivalence?:— First, there is the question what determines
whether the two sides of a duality are physically/semantically equivalent, i.e. describe
the same ‘sector of reality’. De Haro [15] and Dieks et al. [23] have argued that the
choice between these two options should depend on whether the models in question
are given what was called an ‘internal’ or an ‘external’ interpretation. The idea is
that for the ranges of the interpretation maps to be distinct, there must be other facts,
external to the triples themselves and our use of them, that determine the distinct
ranges. Typically, these facts will be other pieces of physics to which the system
described by each model triple is coupled—with different pieces of physics on the
two sides of the duality. This coupling ‘breaks the symmetry’ between the two sides,
and secures that the two model triples are about distinct, albeit isomorphic, subject
matters (‘sectors of reality’). In the proposed jargon: the coupling provides an ‘exter-
nal interpretation’ of the model triple. On the other hand: sometimes we propose a
physical theory as a putative theory of the whole universe, i.e. as a putative cosmol-
ogy, so that according to the theory there are no physical facts beyond those about
the system (viz. universe) it describes. If in such a case, there is a duality—which
in our framework, means there are two isomorphic model triples, each putatively
describing the whole universe—then there can be no such coupling to other pieces
of physics. (Gauge-gravity duality provides, of course, a putative example of such a
duality between theories of the universe.) An interpretation of each triple must there-
fore bewhat was labelled an ‘internal interpretation’; and this prompts the conclusion
that the two triples describe the very same ‘sector of reality’. That is: the interpre-
tationmaps have the same range; and there is a triangular diagram, as in Figs. 8 and 9.

(2): Interpreting the specific structure:— Second, there is more to say about the
interpretation of a model’s specific structure, especially in the latter sort of case,
i.e. two sides of a duality describing the same ‘sector of reality’.

Recall that a model M is more than the model triplem, by which it realizes a bare
theory, and which relates to another model triple in a duality. M also has a specific
structure M̄ : as we stressed at the start of Sect. 3.2.1, this structure is not related by
the duality to ‘the other side’. But the specific structure M̄ does get interpreted—
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it supplies arguments for the interpretation maps I Int and I Ext—just as much as the
model triple m gets interpreted.28 This was emphasised by the other notation for
models introduced at the end of Sect. 2.2.3: viz. a model is itself, like a bare theory,
a triple. M’s states and quantities, being specific to M , are in general ‘bigger’/‘more
structured’ than the states and quantities of the bare theory that M models/realizes.
We wrote them with a ‘bar’: thus M = 〈S̄, Q̄, D̄〉. And recall that then Sect. 2.3 took
elements of these ‘bigger’ sets S̄, Q̄ as arguments for the interpretation maps I Int

and I Ext.
So the first point to make is: our discussion of duality has so far ignored the

specific structures M̄1 and M̄2 on the two sides, even though they do get interpreted.
This silence is presumably no problem in a case where we agree that the two sides
are not physically or semantically equivalent. In such a case, the interpretation of
M̄1 and M̄2 just means there are physical facts on each of the two sides, additional
to the facts that are isomorphic with (a subset of) facts on the other side.29 Thus for
the case of Kramers-Wannier duality, the obvious examples of such non-matching
physical facts would be facts about the value of the temperature: high on one side,
and low on the other. In short: these additional facts (in the realms of intension and
extension, respectively) are: on one side, in the ranges I Int(M̄1) and I Ext(M̄1); and on
the other side, in the ranges I Int(M̄2) and I Ext(M̄2).

But what about the other sort of case: where the two sides do describe ‘the same
sector of reality’? Is it really satisfactory to say that there are physical facts that:

(a) are additional to those facts described by the isomorphic model triples,
i.e. those ‘caught’ by the duality/the common bare theory; yet also

(b) fall into two such disparate subsets: one subset expressed by M̄1 and the
other subset expressed by M̄2?
In short: this world-picture, combining (i) a set of facts expressed by the two sides
in the same way (though this sameness may be not obvious—the duality can be
surprising), and (ii) two other sets of facts expressed in very different ways by the
two sides, is surprising: and maybe it is odd, or unsatisfactory ...

We saw examples of this in comment (3) of Sect. 2.1, for example in gauge-
gravity duality. Here, the set of facts that are the common core, a la (i), consists
only in a class of asymptotic operators and a conformal class of (d − 1)-dimensional
metrics. And the sets of facts a la (ii) include, on the bulk side, gravity (such as:
Einstein’s equations coupled to matter) in d dimensions expressed by M̄1, and on
the boundary side, a conformal field theory (such as: the Yang-Mills equations) in

28At least, this is what we would in general expect. Agreed, one might interpret a model without
interpreting all of the specific structure M̄ : recall footnote 13 on the need to allow the interpretation
maps to be partial, i.e. to deliver no value for certain arguments. For more details, see Sect. 1.1.2.a
of De Haro [16].
29In Sect. 3.2.2, we emphasised the fact that only the model triples, and not the specific structure,
are physically significant. When we now consider external interpretations that do give a physical
meaning to the specific structure,wehave to say that these interpretations change the physical content
of the model (its physical degrees of freedom). This is correct, because external interpretations do
not need to preserve the structure of the model as a quadruple.
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d − 1 dimensions expressed by M̄2. See DeHaro [15, Sect. 2.1], [16, Sect. 2.2] for a
discussion in the context of our schema.

For our example of bosonization, we will see in Sect. 5.2.4 how external interpre-
tations map to different (sets of) worlds, while the internal interpretation maps to the
same (set of) world(s). For the latter interpretation to be possible, we will see that the
worlds must contain both bosonic and fermionic facts. So, the internal interpretation
does not efface the distinction between bosons and fermions, but distinguishes them
and identifies them in the world.

3.2.4 Combining Duality and Symmetries

In this Subsection, we turn to the relations between dualities and symmetries. There
are three comments to make. They are not controversial. Indeed, they simply gather
some threads from discussions in previous Sections. The first makes the obvious
comparison between dualities and symmetries, and notes the conditions for a duality
to reduce to being a symmetry. The second is about a duality preserving a symmetry
of its model-triples; and so returns us to the contrast between the symmetries of a bare
theory, and those of its model-triples. The third returns us to the contrast between
duality and gauge, discussed in comment (4) at end of Sect. 2.1.

(1):Making the comparison precise:—
Earlier (at the end of Sect. 1.1) we announced that we would endorse a basic analogy
between duality and symmetry: ‘a duality is like a symmetry, but at the level of
theory’, so that while a symmetry carries e.g. a state into a ‘matching’ state, a duality
carries a theory into a ‘matching’ theory.

Indeed, we endorse this analogy—allowing of course for the shift of words from
‘theory’ to ‘model-triple’. This endorsement is clear from:

(a): our discussion of symmetries of theories, taken as triples, and symmetries
of their models, and their model-triples (Sect. 3.1.1); and

(b): our definition of duality as an isomorphism of model-triples that (i) makes
the values of quantities match, and (ii) is equivariant for the two triples’ dynamics
(cf. Eq. 7 and Fig. 7 at the end of Sect. 3.2.1).

In particular (as mentioned at the end of Sect. 3.2.1): a duality reduces to a sym-
metry, in the case where there is just one model, and one model triple, at issue,
i.e. M1 = M2 and m1 = m2. Spelling this out will use the notion of a dual map (in
the pure mathematical sense!), introduced in (i) at the start of Sect. 3.1.1. Recall
that this notion is defined by the pairing whereby states s ∈ S and quantities Q ∈ Q
assign each other a value 〈Q, s〉. Namely: given any map a : S → S, we said that
its dual map on quantities, a∗ : Q → Q is defined by requiring that for any s ∈ S
and Q ∈ Q: 〈a∗(Q), s〉 := 〈Q, a(s)〉. And similarly, starting with quantities: given
any map a : Q → Q, we said that its dual map on states, a∗ : S → S is defined by
requiring for all arguments: 〈Q, a∗(s)〉 := 〈a(Q), s〉.
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Thus suppose there is just one model triple at issue. Then ds is an automorphism
of SM1 ≡ SM2 , i.e. of the state-space in the one model triple; and similarly, for dq on
QM1 ≡ QM2 . So duality’s condition (i), that the values of quantities match [Eq. (7)],
becomes the condition

〈Q1, s1〉1 = 〈dq(Q1), ds(s1)〉1 , ∀Q1 ∈ QM1 , s1 ∈ SM1 . (12)

But dq induces a dual map d∗
q on states, such that: 〈dq(Q1), ds(s1)〉1 = 〈Q1, d∗

q
(ds(s1))〉1. So we conclude that (d∗

q ◦ ds) : SM1 → SM1 is a symmetry (written, as
usual for us, as a map on states rather than quantities). For we have:

〈Q1, s1〉1 = 〈dq(Q1), ds(s1)〉1 = 〈Q1, d
∗
q (ds(s1))〉1 . (13)

Finally, the same verdict—that for a single theory, duality reduces to symmetry—
applies to dynamics, i.e. to dynamical symmetries. That is: if a duality concerns just
one model triple, then Sect. 3.2.1’s condition (ii) for duality—that the duality map
is equivariant for the two triples’ dynamics (i.e. ds is equivariant for Schrödinger
dynamics, and dq is equivariant for Heisenberg dynamics)—reduces to the condition
that the duality is also a dynamical symmetry: for example, that ds is a dynamical
symmetry represented as a map on states.

(2): On duality preserving a symmetry:—
It is straightforward to confirm that on Sect. 3.2.1’s definition of duality, a duality
preserves any symmetry of itsmodel triples. There are two points here. First: there is a
commuting square diagram of isomorphisms. Second: there is the issue of the values
of a quantity being equal on a given state, and on its transform under a symmetry.
The first point will lead in to the second.

First: The duality maps ds, dq are not only bijections, but isomorphisms: ds :
SM1 → SM2 , and dq : QM1 → QM2 . And although we did not have to spell out the
exact structures of SMi ,QMi that these isomorphisms are to preserve (but cf. footnote
22), it is obvious from the fact that ‘is isomorphic to’ is both a symmetric and a transi-
tive relation, that the following diagram, with a understood to be any automorphism
of SM1 , commutes (cf. Fig. 10).

And of course, this diagram of isomorphisms is just what we mean by saying
a duality d preserves an automorphism of the state-space SM1 in its domain model
triple, and preserves SM1 ’s structure. Namely, d carries the automorphism—a map a
on SM1—to a corresponding automorphism of states in the codomain (indeed: range)

Fig. 10 Commutativity of duality and symmetry for states
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Fig. 11 Commutativity of duality and symmetry for quantities

Fig. 12 Commutativity of symmetry and dynamics

model triple. The diagram defines this corresponding automorphism, i.e. the map
forming the fourth side of the square: ds ◦ a ◦ (ds)−1 : SM2 → SM2 .

There is obviously a corresponding point about quantities, as against states. Since
dq is required to be an isomorphism of quantities, the following diagram, with a now
understood to be any automorphism of QM1 , must commute, cf. Fig. 11.

And again, this diagram is just what we mean by saying a duality d preserves
an automorphism of the quantities in its domain model triple, and preserves QM1 ’s
structure. Namely, d carries the automorphism—a map a onQM1—to a correspond-
ing automorphism of quantities in the codomain (indeed: range) model triple. The
diagram defines this corresponding automorphism: dq ◦ a ◦ (dq)−1 : QM2 → QM2 .

Second: But in physics, the notion of symmetry involves more than the notions
of automorphism of the state-space, and of the set (usually algebra) of quantities.
It involves the pairing whereby states s and quantities Q assign each other a value:
〈Q, s〉. For these values (for a large and salient set of quantities, though usually not
all quantities) must be preserved under the symmetry.

But satisfying this is automatic, for a duality as defined at the end of Sect. 3.2.1.
That is: For a duality to respect this aspect of symmetry was already built in to our
definition of duality: namely in condition (i), that the values are equal between states
and quantities that correspond by the duality. Recall Eq. (7), which we here repeat:

〈Q1, s1〉1 = 〈dq(Q1), ds(s1)〉2 , ∀Q1 ∈ QM1 , s1 ∈ SM1 . (14)

Finally (and just like at the end of (1) above): the same verdict—that a duality
preserves any symmetry of its model triples—applies to dynamics, i.e. to dynamical
symmetries. Recall from footnote 19 (in Sect. 3.1.1) that a dynamical symmetry is a
commutation i.e. equivariance condition. So for the Schrödinger picture of dynamics,
the diagram for the ‘first’ side of a duality, i.e.m1 = 〈SM1 ,QM1 ,DM1〉, is, with a the
dynamical symmetry, as in Fig. 12.

So we now compose this diagram with Fig. 10, which represents that a duality
preserves a symmetry. But since in Fig. 12, the ‘first’ side, ‘1’, of the duality occurs
twice, on both top and bottom rows, we now need to compose Fig. 12 with Fig. 10
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Fig. 13 Commutativity of duality, symmetry, and dynamics

twice: both on its bottom row; and also on its top row (with the duality arrow in
Fig. 10 reversed). The resulting diagram (Fig. 13) shows that the duality isomorphism
on state-spaces ds carries the dynamical symmetry a on the ‘1’ side of the duality, to
a dynamical symmetry on the ‘2’ side: namely, the symmetry ds ◦ a ◦ d−1

s (cf. either
the top or bottom square). The Schrödinger picture dynamics on SM2 is (reading
down the columns in the Figure): ds ◦ Dt,t0 ◦ d−1

s .
So much by way of showing that a duality always preserves a symmetry of its

model triples. In conclusion, we should emphasise again the three summarising com-
ments, (i) to (iii), at the end of Sect. 3.1.1 about the contrasts between the symmetries
of a bare theory, and those of its models, and of its model-triples.

(3): The contrast between duality and gauge:—
Finally, we should briefly return to our comment (4) at the end of Sect. 2.1. We said
there that, although there is some truth in the common remark that two dual theories
are like gauge formulations of a single theory, there are two important differences.
Sometimes the two duals are agreed to not be physically equivalent (as in Kramers-
Wannier duality). And anyway, the specific structure in a model is usually not gauge,
in the sense of descriptively redundant.

Our discussion since Sect. 2.1 reinforces this comment. For we have seen in more
detail the idea of specific structure in a model—-starting with our notation, M̄ , from
Sect. 2.2.3. And by relating duality as isomorphism of model triples to our interpre-
tation maps, we saw that duality allows, but does not entail, physical equivalence
(cf. Sect. 3.2.3).

Besides, we have also seen a more specific contrast between duality and gauge,
that was not foreshadowed in comment (4) at the end of Sect. 2.1. Namely, we noted
in (2) at the end of Sect. 3.1.1 that if a symmetry of a model’s specific structure—
a symmetry of M̄—is well-defined on the model triple, we expect it to be trivial,
i.e. the identity map, there. This point implies that we would in general expect gauge
(i.e. descriptively redundant) structure to not be carried across intact by a duality.
And indeed: this has been illustrated in detail in gauge-gravity dualities. De Haro
[18] has shown that a certain subgroup of the diffeomorphism group of the gravity
model of the theory (roughly, the diffeomorphisms which preserve the asymptotic
boundary conditions) is ‘invisible’ to the gauge model of the theory, in the sense of
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not representing any difference on that model, and so being trivially represented on
the theory (the common core). Similarly for the ‘gauge symmetries’ of the gauge
side of the duality. These are not visible on the gravity side: they are symmetries of
the specific structure of the gauge model, and are trivially represented on the theory
(the common core); [16, Sect. 2.2.3], [20, Sect. 5.2].

4 The Basic Boson-Fermion Duality

Boson-fermion duality will be our main example of the schema developed in Sects. 2
and 3: for, as we discussed in Sect. 1.2, it lies in the middle of the spectrum between
(i) mathematical precision and established physics, (ii) scientific importance.

Boson-fermion duality is a vast field, still an active area of research today, espe-
cially in its three- and four-dimensional versions.30 But even just in two dimensions,
there is a large number of examples, which we will discuss in the next Section. In
this Section, we will start with the basic case: that is, the equivalence between the
free, massless scalar field, and the free, massless Dirac fermion, in two Euclidean
dimensions.31 This case already exhibits all of the interesting and non-trivial features
of the more involved dualities, and so we will analyse it in some detail.

Our exposition will be necessarily brief, and will focus on those aspects that best
illustrate the schema. Thus we will downplay many other important physical and
mathematical aspects of this duality, such as: the existence of classical and quantum
soliton solutions in these theories, the integrability of the equations, the notions of
Noether and topological charges, the connection with QCD andmonopoles. Neglect-
ing these important topics is the pricewepay for focussing on illustrating a conceptual
schema.

This Section is introductory. We here collect the technical results (especially,
about the symmetries, their associatedNoether currents, and the algebras the currents
generate) that will allow us to illustrate our schema. Section4.1 introduces the free,
massless boson. Section4.2 introduces the free, massless Dirac fermion. (In Sect. 5,
we will present the basic boson-fermion duality, and show how it exemplifies our
duality schema from Sects. 2 and 3.)

Our exposition will mainly follow Ginsparg [30] and Frishman and Sonnen-
schein [28].

4.1 The Free, Massless Boson

In this subsection,we study the free,massless boson.Weanalyse its symmetries,write
down the associatedNoether currents, and give relevant details about its quantization,

30Cf. e.g. [31, 39, 40].
31The results in Minkowski signature are readily obtained by a Wick rotation, as we discuss in
Sect. 4.1.
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in particular we give the algebra that the Noether currents satisfy. This algebra will
be the starting point of the comparison, in Sect. 5, with the fermionic model (where
we will also justify how the bosonic and fermionic models are ‘models’, in our sense
of Sects. 2.2.2 and 2.2.3).

In two-dimensional quantum field theory, it is very useful to work in complex
coordinates. We will use the coordinates z = x0 + i x1, z̄ = x0 − i x1 parametrising
C ∼= R

2, the complex and Euclidean planes, respectively.
We first discuss the classical field and its symmetries, in two points, (i)–(ii),

below. A free, massless scalar field � satisfies the massless Klein-Gordon equation,
which in the complex coordinates chosen in the previous paragraph takes the form:
∂∂̄� = 0 (here, and elsewhere, we use the short-hand ∂ = ∂/∂z, ∂̄ = ∂/∂ z̄). The
general solution to this equation allows for much more general functions than it
does in higher dimensions, and this is the root of the richness of two-dimensional
quantum field theory. The general solution is the sum of a holomorphic and an anti-
holomorphic function32:

�(z, z̄) = φ(z) + φ̄(z̄) . (15)

The holomorphic and anti-holomorphic functions φ(z) and φ̄(z̄) are often called the
left-, respectively right-moving parts of �. This is because a holomorphic function
depends only on z = x0 + i x1: and after Wick rotation x1 → −i x (with x0 = t), the
holomorphic part of � induces a function of t + x . For any fixed value of t + x , this
indeed gives motion to the left (the speed is always negative at fixed t + x); whereas
z̄ → t − x , and thus f̄ (z̄) induces a function of t − x , which is right-moving (the
speed is always positive at any fixed t + x).

The equations of motion (equivalently, the classical action) have two sets of sym-
metries which will be the starting point of our set-up (once they are generalised to
symmetries of the quantum version of the model):

(i) Conformal transformations. In two dimensions, the action of a massless scalar
field is invariant under a large group of coordinate transformations, namely confor-
mal transformations: these are scale transformations with a variable scale factor, such
that angles are preserved. In complex variables z, z̄, the conformal transformations
are parametrised by arbitrary holomorphic and anti-holomorphic functions:

z → z′ = f (z) , z̄ → z̄′ = f̄ (z̄) . (16)

This is the two-dimensional version of the conformal transformations. Unlike the
conformal group in higher dimensions, which has an finite number of genera-
tors (the generators of the Poincaré group plus additional generators of conformal

32Classically, we may indeed require the solutions to be holomorphic and anti-holomorphic func-
tions. Quantum mechanically, there are singularities which are both inevitable and the source of
interesting physics, as we will see. Thus we will allow φ(z) and φ̄(z̄) to have isolated singularities,
hence we will allow them to be meromorphic and anti-meromorphic functions (operators, in the
quantum version of the model), respectively.
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transformations), the above transformations form an group whose corresponding
algebra has an infinite number of generators. After taking into account quantum
effects, this will be the celebrated Virasoro algebra.

It is easy to see that the above transformations contain, in terms of the Euclidean
coordinates xμ = (x0, x1), in particular: (a) constant translations, xμ → xμ + aμ,
(b) SO(2) rotations (in Minkowski signature, these are SO(1, 1) Lorentz transfor-
mations), which in complex coordinates induce a U(1) action, (c) dilations (scale
transformations) z′ = λ z, z̄′ = λ̄ z̄ (λ ∈ R).

(ii) Affine current algebra transformations. These are translations of the field
by holomorphic or anti-holomorphic functions,

�(z, z̄) → �(z, z̄) + ϕ(z) , �(z, z̄) → �(z, z̄) + ϕ̄(z̄) . (17)

Again, these transformations generalise the invariance of the action under constant
shifts � → � + ϕ0, and are specific to two dimensions.

The conserved currents associated with these two sets of symmetries are obtained
through the Noether procedure. The currents for the affine current algebra transfor-
mations (17) are, up to an overall constant:

J (z) := ∂φ(z) , J̄ (z̄) := ∂̄φ̄(z̄) , (18)

and they are anti-holomorphically, respectively holomorphically conserved in virtue
of their (anti-) holomorphicity. These currents are called ‘affine currents’ because, in
the quantum version of the model, they generate an affine Lie algebra or Kac-Moody
algebra.

The conserved currents associated with the conformal transformations (16) are
the (holomorphic and anti-holomorphic) components of the stress-energy tensor:

T (z) = −1

2
∂φ ∂φ = −1

2
J 2(z) , T̄ (z̄) = −1

2
∂̄φ ∂̄φ̄ = −1

2
J̄ 2(z̄) . (19)

The fact that the components of the stress-energy tensor can be written as squares
of the affine algebra currents will be important upon quantisation, since it will link
together the Virasoro and the Kac-Moody algebras. In the quantum case, the right-
hand side of (19) will contain the normally ordered product, and the relation is then
called the Sugawara construction.

Our next task is to quantise themodel. There are twowell-knownways to quantise
this model (which we briefly discuss in what follows), but we will settle for a third
one, which is the more ‘modern approach’, called ‘radial quantisation’. It is well
suited to our perspective because it exploits the conformal symmetry group, and
delivers the conformal algebra in the way we want it for Sect. 5.
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One can adopt conventional canonical quantization,where onewrites downcanon-
ical commutation relations for the fields and their canonically conjugate momenta.
One can realize these commutation relations by choosing a Fock-space representation
of the fields, and writing down the algebra of the creation and annihilation operators,
which (in the present case of two dimensions) depend on one-dimensional momenta.
One can then write down a Hamiltonian in terms of the creation and annihilation
operators, and set up the physical states in the Fock space. See e.g. [28, Sect. 1.6].

The model can also be readily quantised using path integral quantisation. See
e.g. Frishman and Sonnenschein [28, Sect. 1.9]. Here, wewill adopt the thirdmethod,
radial quantisation, as follows (ibid. Sect. 1.7).

This approach is based on the complex coordinates z, z̄. First, we will use the
conformal symmetry group to choose more convenient coordinates: mapping ξ :=
x0 + i x1 
→ z := eξ = ex

0+i x1 (for more details, see the Appendix). ‘Radial’ then
refers to the fact that, after this conformal transformation, the equal-time slices x0 =
constant, used for canonical quantisation, become circles of constant radius. The line
integrals over space which appear in physical quantities, such as charges, then turn
into contour integrals on the complex plane. We will not spell out the details of this
procedure, of which there are many good reviews (see e.g. Sect. 2.2 of Ginsparg [30]
or Lüst et al. [44, Sect. 4.1]), but the key technique we will mention is the use of
radial ordering to define the order of operators which are integrated over a contour
in the complex plane.

Remember that our aim for the quantum model of the boson is to obtain its
algebra of operators. To this end, we will use the short-distance behaviour of a
distinguished set of fields (so-called ‘primary fields’: cf. next paragraph). The algebra
is indeed encoded in the short-distance behaviour of the products of the primary fields
among each other and with the stress-energy tensor. This short-distance behaviour
of products is called the ‘operator product expansion’. To this we now turn.

So let us consider a primary field �(z, z̄). Primary fields are defined by their
transformation properties under conformal transformations (see Eq. (40) in the
Appendix).33 It can be readily shown that the short-distance behaviour of the product
of the stress-energy tensor with any primary field is:

T (z) �(w, w̄) = h

(z − w)2
�(w, w̄) + 1

z − w
∂w�(w, w̄) + finite terms, (z → w)

(20)

T̄ (z̄) �(w, w̄) = h̄

(z̄ − w̄)2
�(w, w̄) + 1

z̄ − w̄
∂w̄�(w, w̄) + finite terms, (z̄ → w̄)

where h, h̄ are the conformal weights of the primary field �, i.e. the powers with
which a field scales under meromorphic, respectively anti-meromorphic

33They are called ‘primary’ because all other fields, which are called ‘descendants’, can be obtained
from them, through successive application of derivatives. See De Haro et al. [15, Sect. 3].
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transformations (16), as in Eq. (40) of the Appendix.34 The conformal weights are
usually denoted as (h, h̄), and they encode how a field transforms under dilatations.35

For example, taking� = ∂φ(w), i.e. the (derivative of the)massless left-moving part
of φ, we have h = 1, since this field is a vector, hence the conformal weight is (1, 0).
Obviously, this is our primary field of interest in this model. As we will see below,
after Eq. (22), the stress-energy tensor is not a primary field. On the other hand
(cf. Sect. 4.2), a Weyl-Majorana fermion � = χ(w) has conformal weight ( 12 , 0).
The anti-holomorphic bosonic field φ̄ has conformal weight (0, 1); and the anti-
holomorphic Weyl-Majorana fermion has (0, 1

2 ).
The expansion (20) is called an operator product expansion. Operator product

expansions are important because they tell us almost everything we need to know
about a field: in particular, we will derive from them the algebra of operators of
the model. The form of (20) is a direct consequence of the quantum nature of the
operators, together with the assumption of �’s being a primary field, i.e. that it
satisfies (40). It can be shown that the operator product expansion is equivalent to the
canonical commutation relations of the modes of the fields. Eq. (20) thus encodes
the short-distance behaviour of �, and is often taken to be an alternative definition
of a primary field �.

In the classical model, the stress-energy tensor was given, in Eq. (19), by the
squares of operators evaluated at the same point. In the quantum version of the
model, this gives rise to divergences which need to be (and can be) renormalised.
For the two-dimensional quantum field theories which we consider in this paper, the
divergences are renormalised, to all orders, by the addition of a single counterterm
to the action; alternatively, it suffices to define expressions such as (19) by normal
ordering:

T (z) = −1

2
: J (z) J (z) : , T̄ (z̄) = −1

2
: J̄ (z̄) J̄ (z̄) : , (21)

where the affine currents are still given, in the free bosonic scalar case, by (18), now
as operator equations. The normal ordering is denoted by the colons. For the details
of the normal ordering procedure, see e.g. Ginsparg [30, Sect. 2.3].

Similarly to (20), the operator product expansion of the stress-energy tensor with
itself can be worked out:

T (z) T (w) = c/2

(z − w)4
+ 2

(z − w)2
T (w) + 1

z − w
∂T (w) . (22)

Here, c = 1 for the free scalar (19), and it is called the central charge. Comparing
the second term with (20), we see that h = 2, i.e. the stress-energy tensor T is a

34As remarked in footnote 32, in the quantum case we allow for (anti-) meromorphic, rather than
(anti-) holomorphic, operators.
35In more detail: h + h̄ is the eigenvalue of the dilatation operator, and h − h̄ is the eigenvalue of
the (Euclidean) rotation operator. Hence, the conformal weights contain information about the mass
and the Euclidean spin of a field.
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conformal field of weight (2, 0), as expected from dimensional analysis. However,
compared to (20), this expansion has, in addition, the first term. So T (z) is not a
primary field in the sense of Eq. (20), nor does it transform as in Eq. (40). The term
proportional to the central charge c = 1 is obtained making use of the normalized
expression (21). For another way to calculate the central charge, see Frishman and
Sonnenschein [28, Sect. 1.10].

In the same way, the operator product expansion of two affine currents (18), as
well as that between T and J , can be calculated, with the following result:

J (z) J (w) = 1

(z − w)2
+ finite terms, (z → w)

T (z) J (w) = 1

(z − w)2
J (w) + 1

z − w
∂ J (w) . (23)

The second equation between T and J is simply (20) applied to the special case
h = 1, owing to the fact that J = ∂φ is indeed a primary field of weight (1, 0).

Like in the canonical formalism,where a classical expansion of the field translates,
quantum mechanically, into Fock modes: also in radial quantization it is convenient
to introduce modes, which will give rise to creation and annihilation operators of the
fields upon quantisation. That this is possible is ensured by (15), which says that the
field can be decomposed intomeromorphic and anti-meromorphic parts. In particular,
we can do a Laurent expansion of the meromorphic and anti-meromorphic parts of
the field. Thus, in virtue of (18) and (21), the affine currents and the stress-energy
tensor will have their own Laurent expansions:

J (z) =
∑
n∈Z

Jn
zn+1

, J̄ (z̄) =
∑
n∈Z

J̄n
zn+1

T (z) =
∑
n∈Z

Ln

zn+2
, T̄ (z̄) =

∑
n∈Z

L̄n

z̄n+2
. (24)

Overall factors of 1/z and 1/z2 can be extracted from J , respectively T : a fact which
will be useful because these currents have h = 1 and h = 2, respectively, and so J0
and L0, as defined by (24), will have special physical significance. The summation
range is infinite and therefore this normalization can always be reached, by a simple
translation of n.

Because the currents satisfy (18) and (21), it is clear that Jn are linear in the creation
and annihilation operators of the meromorphic field φ, and the Ln are quadratic in
(an infinite sum of) the Jn’s. This fact will be built into our considerations in what
follows, though we do not work it out explicitly.

Finally, we find the algebras satisfied by Jn and Ln . Again these can be found
either by canonical quantization or, in line with the methods we have used so far,
they can be obtained directly from the operator product expansions (23) and (22),
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combined with the radial ordering prescription for the operators which contain circle
integrals, mentioned above. Writing δm+n as short for δ(m+n)0 (defined as usual to be
1 or 0 according as m + n = 0 or m + n �= 0): the result is:

[Lm, Ln] = (m − n) Lm+n + c

12
n(n2 − 1) δm+n

[Jm, Jn] = −m δm+n

[Lm, Jn] = −n Jm+n . (25)

and the same algebra is satisfied by the J̄n and L̄n . Barred and unbarred quantities
commute with each other. In the case at hand, c = 1.

We recognise the first line as the celebrated Virasoro algebra, as expected from
the fact that the classical theory has a conformal symmetry group. In the second line,
one may recognise the level k = 1, abelian Kac-Moody algebra. The third line is
obtained from the operator product expansion between T and J in (23), and it makes
the total algebra into the semi-direct product of the abelian Kac-Moody algebra and
theVirasoro algebra. The algebra (25) is called the enveloping Virasoro algebra (with
c = 1 and k = 1). The general enveloping algebra of the affine Lie algebra is given
in (41) in the Appendix.36

This, i.e. Eq. (25), is the central result from the physics literature which we have
been seeking, and will use in Sect. 5. For, together with (21) and themode expansions
(24), the tensor product of the holomorphic enveloping algebra of the affine Lie
algebra (25) and its anti-holomorphic copy contains all of the information about the
quantum version of the model. This is because the states now live in the vector space
on which this algebra acts (a Hilbert space), and the quantities and the dynamics are
constructed from the operators satisfying the algebra. We will show this in Sect. 5.

At this point,wenotice that the generators L± and L0 span anSL(2,R) subalgebra.
Together with the generators L̄± and L̄0, which satisfy the same algebra, they form
the conformal algebra of SL(2,C), which is the symmetry group of the vacuum of
this model.

4.2 The Free, Massless Dirac Fermion

In this subsection, we consider our second model: of a free, massless Dirac fermion
in two dimensions. Our goal is to rederive the infinite-dimensional algebra (25) in
this model. We will follow similar steps as in Sect. 4.1: we will derive the classi-
cal symmetries, quantise the model, and obtain operator product expansions. (The

36Notice that (25) satisfies the property that the level k can be changed by a rescaling of J . Thus, in
the simple case we are dealingwith here, in which the affine Lie algebra is based on the commutative
Lie group U(1), the level has no real meaning. This is not important for us, since we will not use it:
rather, our analysis in Sect. 5 will be based on the fact that we are here dealing with a special case
of the general enveloping algebra of the affine Lie algebra.
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discussion of how this accommodates to the sense of ‘model’, in Sects. 2.2.2 and
2.2.3, is postponed to Sect. 5.2.)

The massless Dirac fermion is a two-component, complex spinor which can be
decomposed as � =: (ψ, ψ̃), where ψ and ψ̃ are chiral (Weyl) fermions, called left-
and right-chiral, respectively. The action is:

S Dirac = 1

4π

∫
d2x �̄ /∂� = 1

4π

∫
d2z

(
ψ† ∂̄ψ + ψ̃† ∂ψ̃

)
, (26)

where in the middle expression we used the real form of the action, and in the last
expression we used complex coordinates. The equations of motion imply that ψ and
ψ̃ are, respectively, holomorphic and anti-holomorphic (respectively meromorphic,
in the quantum version of the model).

It is customary to further decompose the Dirac fermions into real, i.e. Majorana
fermions, as follows:� = 1√

2
(�1 + i �2). In terms of the chiral (Weyl) fermions,we

get ψ = 1√
2
(ψ1 + iψ2), where ψ1,2 are Weyl-Majorana fermions, and so the action

takes the form of the sum of two copies of a single Weyl-Majorana fermion, which
is conventionally called χ (where χ = ψ1,2). The action for a single Weyl-Majorana
fermion is:

SWM = 1

8π

∫
d2z

(
χ ∂̄χ + χ̃ ∂χ̃

)
, (27)

and again χ, χ̃ are (if extended from the real line to the entire complex plane) mero-
morphic and anti-meromorphic, respectively.

Like in the case of the free, massless boson studied in Sect. 4.1, this action is
invariant under two sets of symmetries:
(i) Conformal transformations: z → f (z), z̄ → f̄ (z̄), the same transformations
on the complex plane that we found in the bosonic model, Sect. 4.1.
(ii) Left-holomorphic-chiral and right-anti-holomorphic-chiral transfor-
mations: which act on the Weyl-Majorana fermions as follows:

ψ → ψ′ = ei α(z) ψ

ψ̃ → ψ̃′ = ei α̃(z̄) ψ̃ . (28)

Quantisation now proceeds similarly to what we did for the free, massless boson.
One can do canonical quantisation (see [28, Sect. 2.12]) or again use circle integra-
tion and radial ordering to calculate operator product expansions, and get from them
the commutation relations for the generators.

First, let us notice that the definition of primary fields, Eq. (40) in the Appendix,
applies equally well to fermions as it does to bosons. Also, the stress-energy tensor
for fermions can be introduced, analogously to Eq. (19) (as we do below).

The Weyl-Majorana fermion is a primary field, as one finds from its operator
product expansionwith the stress-energy tensor (20). Like before, we have conserved
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currents (i.e. annihilatedby ∂̄ for themeromorphic, andby∂ for the anti-meromorphic
current) associated with the sets of symmetries (i) and (ii) above:

J (z) = : ψ†ψ : , J̄ =: ψ̃† ψ̃ :
T (z) = −1

2
: J (z) J (z) := −1

2
: (

ψ† ∂ψ − ∂ψ† ψ
) : , (29)

with a similar expression for T̄ in terms of ψ̃. χ has conformal dimension ( 12 , 0), and
χ̃ has conformal dimension (0, 1

2 ). The central charge (22) is c = 1
2 (and so, a Dirac

fermion, which is the sum of two Majorana-Weyl fermions, has twice this amount,
i.e. c = 1).

Notice that despite the half-integral values of the conformal dimensions, the cur-
rents J (z), J̄ (z̄) in (29) actually have the same conformal dimensions as the currents
(21) in the bosonic model. This is because they are now quadratic in the fermions.

As it turns out, the operator product expansion of J with itself is identical to that
in (23). Consequently, because T in (29) satisfies the Sugawara construction (cf. after
Eq. (19)), the product expansions of T with itself and of T and J are also identical to
those in (22) and in (23). Now since also here, J and T are meromorphic operators,
we can expand them in coefficients Jn and Ln , as in (24). The resulting algebra is
thus the very same as in the bosonic case, (25), i.e. the semi-direct product of the
Virasoro algebra with c = 1 with the abelian affine algebra at level k = 1 (and its
anti-meromorphic copy)! Therefore, also the state-space will be the same, since it is
constructed as the Hilbert space on which the algebra acts.

The implication of this basic fact—the agreement of the two models on their
algebra of currents—will be explored in the next Section.Wewill see that it naturally
leads to the existence of a duality, and thus to the formulation of a theory comprising
the two models.

5 Boson-Fermion Duality Illustrates the Schema

In this Section, we show how Sect. 4’s bosonic and fermionic models (models in our
sense!) illustrate the schema set out in Sects. 2 and 3, leading up to the definition of
duality in Sect. 3.2. In Sect. 5.1, we state the basic ‘dictionary’ of the duality, mapping
fields, currents and stress-energy tensors. Then Sect. 5.2 builds on this, to show that
the two models are isomorphic, in exactly the sense of our schema: i.e. as regards the
whole trio of states, quantities and dynamics. Then in Sect. 5.3,we return to Sect. 2.4’s
theme: of defining a theory by abstraction from its models.We first note some special
features of our case-study, in particular that it has just two isomorphic models; and
thenwe define a theory, a common core, from the twomodels. In Sect. 5.4, we discuss
other ways one might define a theory from these models, i.e. so as to have them be
representations of it. Finally, we briefly discuss generalizations of our case-study: to
include massive particles, and to include non-abelian degrees of freedom (Sect. 5.5).
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5.1 The Duality Dictionary

InSect. 4,wederived the algebraic structures of the bosonic and the fermionicmodels.
In particular, we saw that both models satisfy the enveloping algebra of the affine
algebra (Eqs. (25) and (41) in the Appendix) with c = 1 and k = 1, for the quantum
currents corresponding to the Noether symmetries.

At this point, Frishman and Sonnenschein [28, Sect. 6.1] conclude that the two
theories are equivalent. They write:

‘Due to the uniqueness of the irreducible unitary k = 1 representation of the
affine Lie algebras, and the fact that the infinite-dimensional algebraic structure fully
determines the theories, we conclude that in two space-time dimensions the theories
of massless free scalar field and Dirac field are equivalent. The equivalence implies
that every operator of one model should have a partner in the other model, in such
a way that the operator product expansions of these operators should be identical.’
(p. 133: Italics in the original).

While we basically agree with this statement, one of its clauses—that the infinite-
dimensional algebraic structure fully determines the theories (in our jargon form
Sect. 2.2: the models)—has not been proven, and requires some explanation and jus-
tification. Doing that is our plan for this subsection and the next. In this subsection,
we give the basic dictionary that Frishman and Sonnenschein refer to in the quoted
passage. (Then in Sect. 5.2.1–5.2.3, we will argue that this infinite-dimensional alge-
braic structure indeed is sufficient to fully specify what we have called a model.)

The duality dictionary is given by the correspondence of the bosonic affine current
algebra currents with the corresponding fermionic currents, and between the stress-
energy tensors, as follows (cf. [28, Sect. 6.1])37:

J B(z) = ∂φ(z) ↔ J F(z) = : ψ†(z)ψ(z) : (30)

TB(z) = −1

2
: ∂φ(z) ∂φ(z) : ↔ T F(z) = −1

2
: (

ψ†(z) ∂ψ(z) − ∂ψ†(z)ψ(z)
) : ,

and similarly for the anti-meromorphic currents. We have already seen that both
sides satisfy the same operator product expansion, and therefore they satisfy the
same algebra.

Notice that only fermion bilinears appear in (30). This is what we expect, since
a single boson (h = 1) should correspond to a pair of fermions (h = 1

2 and h̄ = 1
2 ).

But it is not a priori clear which bosonic field a single fermion should correspond
to. One would here expect to take some kind of ‘square root’ of the boson. But,
surprisingly, the dictionary turns out to extend to a single fermion field as follows:

37The dictionary thus relates (18) and (21) to (29). We here add the subscripts ‘B’ and ‘F’ for
‘bosonic’ and ‘fermionic’, respectively.
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: ei φ(z) : ↔ ψ(z) , : e−iφ(z) : ↔ ψ†(z)

: e−i φ̄(z̄) : ↔ ψ̃(z̄) , : ei φ̄(z̄) : ↔ ψ̃†(z̄) , (31)

and again the operator product expansions agree. At first, this is a very surprising
result, reminiscent of the construction of a coherent state. However, the operator
product expansion shows that the conformal dimension of : eiα φ(z) : is h = α2/2,
so the above dictionary indeed reproduces h = 1

2 and h̄ = 1
2 for the left- and right-

chiral Dirac fermions, respectively. This is indeed a purely quantum result, with no
straightforward classical analogue.

One of the most surprising features of (31) is that φ satisfies canonical com-
mutation relations, while ψ satisfies canonical anti-commutation relations. How
can this be? To calculate the anticommutator of two ψ’s, one uses the formula
eAeB = e[A,B] eBeA, which holds when [A, B] is a c-number. Using this formula
to evaluate the commutator of two exponentials, and using the canonical commuta-
tion relations for the boson and its conjugate canonical momentum, one finds that,
indeed, the left- and right-chiral fermions anti-commute!

5.2 Two Isomorphic Model Triples

In Sect. 5.1, we gave the ‘dictionary’ between the bosonic and fermionicmodels. This
is a bijection between the basic operators of the theory (the fields). But there is, of
course,more to duality than this.Weneed to show that the twomodels are isomorphic,
as triples. Recall our second sense of ‘model’, in Sect. 2.2.2: as a representation of
a theory. So a model is a triple (what we called the ‘model triple’), together with
some specific structure. And the model triple was not a ‘pure copy’ of the theory,
but a representation of it using the specific structure. The next three subsections deal
with the triples of states, quantities, and dynamics. In each of the subsections we
show the existence of an isomorphism between the states, quantities, and dynamics
of the two models (in the third case, an equivariance relation). This will justify that
the boson-fermion equivalence is indeed a duality, in the sense of our schema. The
final subsection considers the interpretation of this duality.

5.2.1 States

We begin by showing that the state spaces of the two models are isomorphic. This
will form the first item in our model triple. The state spaces of the bosonic and the
fermionic models were introduced at the ends of Sects. 4.1 and 4.2, as the Hilbert
spaces obtained from the representations of the enveloping algebra of the affine Lie
algebra (25) (which, for short, we shall also call the ‘enveloping algebra’). We give
some more details here.
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The enveloping algebra is realized in the bosonic and the fermionic cases in terms
of different fields: the bosonic J -currents (18) and the fermionic J -currents (29)
are defined in terms of different fields. Consequently, also the stress-energy tensors,
given in the two cases by the Sugawara construction, differ, and so do the mode
operators Jn and Ln which enter the enveloping algebra of the affine Lie algebra. In
other words, we have two representations of the same algebra. Let us call these A B

for the bosonic representation and A F for the bosonic representation.
The state spaces are, asmentioned in Sects. 4.1 and 4.2, theHilbert spaces obtained

from the representations of the enveloping algebra, Eq. (25): or, better, its generali-
sation, Eq. (41) in the Appendix, to general underlying Lie group and general value
of k. The vacuum state is obtained by requiring Jan |0〉 = 0, for n ≥ 0, where a labels
the generators of the Lie algebra. Here, the generators Jan are the ladder operators
of the algebra. This condition can also be understood physically as the regularity
condition J (z) |0〉 = 0 at z = 0 for the affine currents.

The non-trivial representations are constructed from the irreducible representa-
tions of the algebra, which are uniquely characterised by the highest-weight states
(analogous to states of maximal J for SU(2)), obtained by application of a primary
field (cf. Eqs. (20) and (40)) to the vacuum. Ifwedenote such a state by |l, l̄〉, where l, l̄
are the representations, the remaining states in the representation (so-called ‘descen-
dants’) are obtained by appropriately applying generators, and take the generic form:
L−m1 · · · L−mM L̄−m̄1 · · · L̄−m̄ M̄

J a1−n1 · · · JaN−nN
J̄ a1−n̄1

· · · J̄ āN̄−n̄ N̄
|l, l̄〉, for some integers

M, M̄, N , N̄ . For instance, on the fermionic model, expanding the fermion into
modes38:ψ(z) = ∑

r∈Z+ν
ψr

zr+
1
2
, the ψ−n operators are creation operators, and the ψn

are annihilation operators. The fermionic vacuum is defined as ψn |0〉 = 0 (n > 0),
and the states in the Hilbert space are of the type ψ−n1 · · · ψ−nk |0〉.

We will use the fact that the irreducible unitary representations of the enveloping
algebra, thus constructed, are unique up to unitary equivalence. (See e.g. Frishman
and Sonnenschein [28, p. 133]).39

So, for each of the models, we construct a representation of the algebra on a
Hilbert space,H B for the bosons andH F for the fermions; and these representations
are unitarily equivalent. Let us denote the unitary operator in question U .

5.2.2 Quantities

Next, we show that also the quantities of the two models are isomorphic, thus pro-
viding the second item of the model triple. What are the relevant physical quantities?
We already mentioned in Sect. 3.2.1 that we take the physical quantities to be all the
renormalizable, self-adjoint operators constructed from amore basic set of quantities
(which in amoment wewill identify with the currents) and respecting the appropriate
symmetries.

38Here, ν = 1
2 for periodic boundary conditions, and ν = 0 for anti-periodic.

39For more details, see Di Francesco et al. [24, Chap.14] or Kac [37].
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Let us look again at the two representations,A B andA F, of the enveloping algebra
of the affine Lie algebra, which we discussed in Sect. 5.2.1. We can say more about
these representations: for we already have the ‘dictionary’, Eqs. (30)–(31), between
the fields. At this point we know that this dictionary is a bijection, but we wish to
find a condition for it to be an isomorphism. First: notice that this bijection induces
a similar bijection between the respective mode operators, i.e. it induces a bijective
map between the algebras, d : A B → A F: (d for ‘duality’)

d(Jn, B) = Jn, F

d(Ln, B) = Ln, F . (32)

This is of course just the statement that we have two equivalent representations of
the enveloping algebra.

From the previous section, we know that the representation spaces H B and H F

of these algebras are constructed from the irreducible representations of highest
weight, which are unique up to unitary equivalence. Since the construction of the
representations of the states is the same for the two models [(i.e. in terms of the
algebra generators mapped by Eq. (32)], the algebra generators themselves must be
compatible with the bijection which maps the highest weight representations on the
two sides. So, for consistency we must require:

d(· · · ) = U † (· · · ) U , (33)

where U is the same map used to map the states of the highest-weight representa-
tions in the previous subsection. If the maps U and d were not related a la (33),
the structure of the theory would not be preserved by the duality (since an operator
acting on a state would not be mapped to the the corresponding operator acting on
the corresponding state). In short: once we have fixed the states to be mapped by U ,
as in Sect. 5.2.1, then the same transformation must map the quantities, as in (33).

But Eq. (33) is precisely the condition for the map to be an isomorphism, in
addition to a bijection. And it now follows from the above that the modes of the
currents of the two models are mapped as:

U † Jn, B U = Jn, F

U † Ln, B U = Ln, F . (34)

It also follows that the same relations hold for the currents (30) themselves:

U † J B(z) U = J F(z)

U † TB(z) U = T F(z) . (35)

The same map also maps the fermionic operators:
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U † : ei φ(z) : U = ψ(z) , U † : e−i φ(z) : U = ψ†(z)

U † : e−i φ̄(z̄) : U = ψ̃(z̄) , U † : ei φ̄(z̄) : U = ψ̃†(z̄) . (36)

This is the formalization of (31), which was justified by checking its properties
(including the correct statistics, but also all the correct correlation functions). Given
(31), the factors ofU follow from the fact that ψ(z) creates or annihilates a fermionic
state in H F, and this state is obtained from the corresponding bosonic state in H B

using the samemapU . The operator creating or annihilating this state must therefore
transformbilinearly inU .One can also check that themapbetween the affine currents,
the first equation in (34), follows from (36).

We have discussed themaps between the operators of the enveloping algebra of the
affine Lie algebra, and the corresponding fields. We now discuss the physical quanti-
ties,Q B andQ F, of self-adjoint operators respecting the relevant symmetries. In the
fermionic model, all the self-adjoint operators are quadratic in the fermions: and tak-
ing into account the chiral symmetry algebra, they must necessarily be powers of the
fermionic currents (35) (and their anti-chiral counterparts), appropriately normally-
ordered. In fact, arbitrary analytic functionals of the currents are allowed. There can
be a mixing between the meromorphic and anti-meromorphic sectors in the analytic
functionals, but only such that the chiral symmetry algebra is preserved. Thus, the
enveloping algebra indeed contains all of the information about the physical quanti-
ties:Q F consists of arbitrary analytic functionals in the fermionic currents (35) (and
their anti-meromorphic counterparts), appropriately normally-ordered. The normal
ordering automatically ensures that these correlation functions are well-defined.

One can in principle enlarge the set Q F to also contain the correlation functions
of operators which violate the chiral symmetry algebra, evaluated on the same states,
i.e. without changing the Lagrangian of the model. However, one is then changing
the symmetries of the model triple f = 〈H F,Q F,D F〉, and hence one is defining
a new model triple (and, consequently, if there is a duality for this larger class of
models, one is defining a new theory). We will return to this possibility when we
discuss sine-Gordon/massive Thirring duality in Sect. 5.5.1.

In the bosonic model, there is a similar structure. Now it is not the mixing of chi-
ralities of the fields which the symmetries forbid, but the appearance of the underived
field φ(z) in Q B. Namely, the translation symmetry � → � + a (or, more gener-
ally, the affine current symmetry algebra (17)), forbids the appearance of operators
which depend on φ(z) or φ̄(z̄) directly, i.e. as opposed to depending on them through
their derivatives. When the model is written in terms of the meromorphic and anti-
meromorphic parts of �, translation symmetry is preserved iff all operators depend
on the derivatives of the scalar field. This is precisely how the scalar field appears
in the currents (35). Thus, once again, the affine current symmetry algebra of the
model tells us that all the operators which are physical quantities of Q B, must be
analytic functions of the two currents (and their anti-meromorphic counterparts).
Q B consists of all possible analytic functionals of those currents. As for the renor-
malizability constraint on the physical quantities: as we mentioned before, normal
ordering automatically takes care of getting the correct renormalized quantities.
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To end this subsection, let us get a possible worry out of the way. Namely, one
might be concerned that (36) seems to be introducing complex operators, such as
: ei φ(z) :, into the set of physical quantities of the bosonicmodel, which is supposed to
be entirely real. But this is not quite right. For (36) are in fact not physical operators,
on our conception of the term. It is indeed true that : ei φ(z) : is not self-adjoint in
the bosonic model, but then neither is ψ(z) self-adjoint in the fermionic model.
Neither of these two operators are thus to be taken as physical on either of the
two sides, even if we can build physical operators, such as the currents (30), by
taking powers of them. Thus, none of the operators in (36) belong to either Q B or
Q F. Rather we should think of such operators as states in the Hilbert space, using
the state-operator correspondence. Indeed, recall, from Sect. 5.2.1, that the states in
the fermionic Hilbert space are of the type: ψ−n1 · · · ψ−nk |0〉. So this explains how
ψ(z) can be a physical operator—namely, it creates and annihilates physical states
in H F—while it is not self-adjoint and does not belong to the set Q F of physical
quantities.

Perhaps the most surprising aspect of the above is the fact that, in two dimensions,
the Hilbert space of the bosonic model contains fermionic states, e.g. states with
conformal weight ( 12 , 0). In fact, because the conformal weight of the operator :
ei α φ(z) : is h = α2/2, the Hilbert space contains a 1-parameter family of states with
a continuous range of Euclidean spin values.40 This feature of the quantisedmodels is
indeed surprising—and illustrates our theme of surprise announced in (2) of Sect. 2.1.

5.2.3 Dynamics

Finally, we discuss the equivariance of the dynamics of the two model triples.
‘Dynamics’ can be understood in different ways in different theories, and even in one
formulation of a single theory. Think, for example, of the difference in the dynamics
if it is formulated in the Heisenberg or in the Schrödinger pictures of a theory.

First of all, we have formulated ourmodel triples in the Heisenberg picture: opera-
tors are generally time-dependent and the states are time-independent. Let us consider
the bosonic model first. We are working in Euclidean spacetime, but when analyt-
ically continued to Minkowski spacetime the operator H B := L0, B + L̄0, B (which
generates dilatations on the plane) is the generator of time translations, and is to be
identified with the Hamiltonian. It is indeed the 00-component of the stress-energy
tensor. The same is true in the fermionicmodel: the 00-component of the stress-energy
tensor, which is the generator of time translations, is the operator H F := L0, F + L̄0, F.
These twoHamiltonians are mapped to each other by the mapU in (34) (and the anti-
meromorphic version of that equation). Thus the dynamics is correctly preserved by
the duality map: more precisely, it is equivariant with the unitary transformation.

40Our use of the word ‘Euclidean spin’ here follows the jargon in the physics literature, for the
eigenvalue under Euclidean rotations, as we mentioned in Sect. 4.1. It is questionable whether such
jargon is justified by the physical interpretation in 1+1 dimensions. But we will not need to dwell
on this point, since our main aim in this Section is formal.
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We see that the requirement that the dynamics is correctly mapped between the
two theories does not give any additional piece of the duality map, but simply follows
from the other two: since all the quantities were already dual. This seems to be a
general fact in dualities between quantumfield theories, thoughwe do not necessarily
expect it to be the case for any duality. Namely, in a quantum field theory model,
once we require that all states and physical quantities between the two theories map
correctly, i.e. according to the isomorphism (33), then all correlation functions of
the model automatically map correctly as well. But the correlation functions of a
quantum field theory model exhaust all the dynamical information about the model,
so that knowing all the correlation functions we can, in principle, reconstruct the
dynamics.

Thus, an alternative way to formulate duality is in terms of the correlation func-
tions. This is, in fact, how duality is usually formulated in the string theory literature.
However, we find our own conception of duality more illuminating, because it allows
us to map the states and the operators individually and directly, without having to
unscramble this information from the full set of correlation functions. But either way,
the main point is that the dynamics is correctly equivariant with the duality map.

5.2.4 Interpretation

With our boson-fermion duality now in hand, we return to Sect. 3.2.3’s theme that
a duality should respect the interpretation maps introduced in Sect. 2.3. Our initial
point in Sect. 3.2.3 was that since duality relates twomodel triples, and interpretation
maps apply to model triples (strictly speaking: their components, such as the set of
quantities), interpretation simply proceeds independently on the two sides of the
duality. The range of these interpretation maps could be: either two distinct but
isomorphic ‘sectors of reality’, or the very same sector of reality—in which case
there is a triangular rather than square diagram, as in Figs. 8 and 9. We also said
that the choice between these cases was a matter of an ‘internal’ versus an ‘external’
interpretation.

External interpretations for the models are straightforward to read off from the
model triples: they are the bosonic, respectively fermionic, interpretations which the
two models come with in the first place (i.e. in this case, their original historical
interpretations). There is a natural map I Int which assigns intensions: for example,
it maps a bare or abstract bosonic state to the meaning ‘boson on a line with such-
and-such properties’. And the map I Ext assigns extensions. For example, it maps the
abstract expectation value of a bosonic field to a measurable property of a specific
boson that is fixed as the reference by the context of use. For example, the property
might be the boson’s amplitude or probability of being at a specific place at a specific
time: we say ‘amplitude or probability’, since we understand a value or expectation
value, written schematically as 〈Q, s〉, to also represent all the matrix elements
〈s1|Q̂|s2〉 (cf. Sect. 3.2.1-(1)). In the fermionic model, there are similar interpretation
maps for the fermionic model triple: where the codomains of the maps are now
not the properties of bosons, but the properties of (say) electrons! Thus clearly,
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on the external interpretation the codomains of the maps do not need to agree. In
philosophical jargon: the set of possible worlds where the bosons and the fermions
appear need not be the same sets of worlds.

The internal interpretation abstracts from the specific structure of the two models,
so that the two model triples receive the same interpretation. This interpretation is
therefore best worked out at the level of the theory. Since the duality is exact, each
model contains both bosonic and fermionic states, as we discussed in Sect. 5.2.2. This
means that the world (or set of worlds) which is the codomain of our interpretation,
should contain both bosons and fermions. The interpretation maps, applied to the
models, must commutewith the dualitymap d (or, equivalently,U ) in Eqs. (32)–(33).
The interpretations will map J (z) and T (z) to a current and a stress-energy tensor,
respectively; (as intensions or as extensions, as appropriate: in the ensuing discussion,
we shall not make this distinction, since everything we say applies equally well to
both kinds of maps). The internal interpretation also maps the abstract expectation
value of a bosonic field (whether written as φ(z) or as a fermion bilinear) to the
amplitude or probability of some bosonic event. Likewise, the abstract expectation
value (matrix element) of a fermionic field between two suitable given states will be
mapped to the transition amplitude between two fermionic states.

5.3 Defining a Theory from the Two Model Triples

Wenow return to Sect. 2.4’s theme: of defining a theory by abstraction from its model
triples. We first discuss how our duality’s having just two isomorphic model triples
makes this enterprise vulnerable, in two ways (Sect. 5.3.1). Then we undertake to
define a theory, a common core, from the two models; and discuss their specific
structures (Sect. 5.3.2). Thus the general issues of Sect. 5.3.1—which return us to
the Hilbertian themes at the start of Sect. 1—will lead in to the specific details of
Sect. 5.3.2.

5.3.1 Two Vulnerabilities

At first sight, there might seem to be no issues about the definition of a theory (in our
sense, from Sects. 1.1 and 2.2.1) from a pair of model triples that are isomorphic: or
indeed, from any set of two or more isomorphic model triples. Can we not simply
define the theory as the structure of which the isomorphic model triples are isomor-
phic ‘concrete’ copies? More precisely: here we should clarify the phrase ‘as the
structure of which’, in order to respect Sect. 2.2.2’s point that a model (in our sense!)
usually realizes a theory by being a representation of it, and representation allows
mere homomorphism, rather than isomorphism. So the thought is: can we not simply
define the theory as the structure, S say, of which the (two or more) isomorphic
model triples are representations—as it happens, isomorphic ones? Talk of S thus
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defined as a theory will then engender admitting all its representations as models in
Sect. 2.2.2’s sense.

We agree that this relaxed attitude is tenable. After all, ‘theory’ is a term of art:
so one is at liberty to define it as one sees fit. But in both pure mathematics and
theoretical physics, the abstraction (‘extraction’) of a general pattern or structure
from a given set of examples is a matter of judgement, to be made in the light of
one’s aims and intuitions, including the aim of representing the world as accurately
as possible. This means that there are two related worries one might have: that is,
two limitations to which the above strategy for defining a theory is vulnerable.

(i): Suppose that—as in our bosonization case-study—the given examples are
isomorphic: where ‘isomorphic’ is itself a term of art, made precise by some mathe-
matical structure we see exactly copied in the examples. Then one worries that there
might be non-isomorphic examples which one has not thought of (has not ‘been
given’) that are equally good examples of the general pattern one is trying to write
down—that equally fit one’s aims and intuitions.

(ii): Suppose the given examples are not isomorphic; (again, in the sense we have
in mind, especially initially). Still one worries that they might not be sufficiently
varied, so that the pattern one writes down after considering them is too restrictive.
That is: the pattern encodes aspect(s) that, given one’s aims and intuitions, are really
accidental commonalities of the examples. Recall (from the end of Sect. 2.4) the
example of colour as an artefact that could beset Frege’s definition of direction as an
equivalence class of mutually parallel lines.

The general answer to these worries lies in the point, argued in Sect. 3.2.2, that for
models which purport to describe the physical world, the distinction between what
is in the triple and what is specific structure cannot be blurred.41 So these worries
can be set aside: for a give target system, typically only a single triple will provide
a complete description—up to isomorphism, that is.

So much by way of rehearsing the general issues about defining a theory from
models: specifically, frommodel triples. For the purposes of this paper, what matters
is how these issues play out in our case-study, bosonization. Section5.3.2 will give
details about this. But to summarise:— The theory we will construct in Sect. 5.3.2 is
the simplest one that canbe constructed fromour bosonic and fermionicmodel triples,
using the isomorphism at hand from Sect. 5.2. But in line with this Subsection’s
comments, we make no claim that is the only (or even best) way to ‘extract a pattern’

41As an example, consider the bosonic and fermionic models, but now weakened by the stipulation
that the Virasoro algebra belong to the model triple, while the affine Kac-Moody algebra [(and the
third line in Eq. (25)] belongs to the specific structure. As we argued in Sect. 3.2.2, this stipulation
changes the physical content of the models, and so it is not innocuous. The models thus obtained
contain different numbers of (uninterpreted) physical degrees of freedom, and so cannot describe
the bosons or the fermions of Sect. 4. This is because the boson and the fermion CFTs (even
before they are physically interpreted) treat the Kac-Moody degrees of freedom not as ‘accidental
commonalities’, in the sense of Sect. 2.4: but as physical, and related to the Virasoro generators by
the Sugawara construction. (For example, if we drop the chiral symmetry on the fermionic model,
we lose the reason to restrict to chiral quantities only: cf. Sect. 5.2.2; and likewise for the boson’s
affine current symmetry algebra.) Thus the boson and fermion models are not dual, if based on just
the Virasoro algebra. We thank Josh Hunt for bringing up this example.
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from the model triples. Indeed, our final two Subsections, Sects. 5.4 and 5.5, will
consider other such ways: in particular, by taking into account other models.

5.3.2 Defining the Theory

In this subsection, we collect our results from Sect. 5.2 about the two model triples,
in order to define our theory. We have so far defined two models:—

(a) A bosonic model triple, b := 〈S B,Q B,D B〉, with: S B = H B, the Hilbert space
which is constructed from the irreducible highest-weight representations of the
enveloping algebra of the affine Lie algebra, represented on the bosons. ‘Represented
on the bosons’ here means that the generators of the affine Lie algebra (25), which
proceed from the Laurent expansion (24), are constructed from the bosonicfields (18)
and (19) (and their anti-holomorphic counterparts). Thus,Q B is the set of normally-
ordered analytic functions in the bosonic currents (J (z) B, J̄ (z̄) B, T (z) B, T̄ (z̄) B); and
D B = L0, B + L̄0, B the dilatation operator of the bosonic model.

(b) A fermionicmodel triple, f := 〈S F,Q F,D F〉, with:S F the sameHilbert space,
represented on the fermions, H F; Q F the set of normally-ordered analytic functions
of the currents (J (z) F, J̄ (z̄) F, T (z) F, T̄ (z̄) F); and D F = L0, F + L̄0, F the dilatation
operator of the fermionic model.

What structures make up the ‘specific structure’ M̄ , of each of the models B :=
〈b, B̄〉 and F := 〈 f, F̄〉, in the sense of our notation in Sect. 2.2.3, and especially
Eq. (2)? On the bosonic side, the specific structure B̄ clearly contains the field φ(z)
(and functionals of it), together with the symmetry algebra (17) acting on it. This
symmetry algebra will, however, manifest itself in the model triple through the affine
currents and their algebra. Also the defining relations of the field (equation ofmotion,
etc.) are specific to B̄.

On the fermionic side, it is the field ψ(z), with its chirality symmetry (and a
different set of defining relations, equation of motion, etc.), which are parts of the
specific structure F̄ . Though ψ(z) defines a state in the Hilbert space, as discussed in
Sect. 5.2.2, thinking of this state as created by ψ(z), i.e. a fermion with certain mero-
morphic and chirality properties, it is part of the specific structure. All the Hilbert
space knows about this fermion is that there is a state of conformal weight ( 12 , 0).

We are now ready to discuss the theory which we can construct from these two
models: by discussing the common core of the two models, i.e. the model triples
(or roots), to which the theory is isomorphic: b ∼= f ∼= T . It is a theory based on
four currents (J (z), J̄ (z̄), T (z), T̄ (z̄)) of conformal dimensions (1, 0), (0, 1), (2, 0),
(0, 2), satisfying the enveloping algebra with c = 1 and k = 1. Its states are the
unitary representations of this algebra. The dynamics is given by singling out the
Hamiltonian H = L0 + L̄0.

Sets of symmetries of the theory: The theory has two built-in sets of symmetries:
(i) a conformal group and (what we shall call), generated by the stress-energy tensor,
(ii) an affine current symmetry algebra, generated by the J -currents.
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(i) The conformal symmetry group, Eq. (16), is represented in the same way in
the two models—since this is a symmetry group of the background spacetime. This
is also related to the fact that the Hamiltonian, and hence the dilations, are related
by equivariance between the two theories. Again: T (z), the stress-energy tensor of
the theory, is represented in both the models.

(ii) The affine current symmetry algebra is represented very differently in the two
models! Namely, as affine current algebra transformations [(Eq. (17) in Sect. 4.1(ii)]
on the bosonic model, but as left- and right-chiral symmetry algebra (Eq. (28) in
Sect. 4.2(ii)) on the fermionic model. This symmetry algebra restricts the kinds of
physical quantities in the theory, as we have explicitly discussed in Sect. 5.2.2, in
the same way. Yet the theory does not “see” any of the features from which the
affine current algebra arises: which are very different in the two models, viz. the
transformations of the fields Eq. (17) versus (28).

We have discussed this duality in some detail because it is a good model to the
more general, and technically involved, boson-fermion dualities in two-dimensional
conformal field theory: to which we turn in Sect. 5.5.

5.4 Further Abstraction

The discussion in Sects. 5.2.2 and 5.3 illustrates our theme of the limitations of
abstraction.We constructed our theory from two isomorphicmodel triples: themodel
triple of the theory was built from the representations of the enveloping algebra of the
affine Lie algebra (25), which give a unique set of states (discussed in Sect. 5.2.1),
and a basic set of quantities: the generators of the algebra themselves. The dynamics
was a choice of a Hamiltonian among the quantities (Sect. 5.2.3). As we saw in
Sect. 5.2.2, the full set of quantitiesQ of the theory contains more than just the basic
set: so that arbitrary analytic functionals of the currents (J (z), J̄ (z̄), T (z), T̄ (z̄)),
and their derivatives, are allowed. Compare the discussion of the symmetry algebra
(ii) in Sect. 5.3.

But we also know, from Sects. 2.4 and 5.3.1, that there are no general rules, fixed
once-and-for-all, for defining theories. So one asks: to what extent is our procedure
above unique? It is of course unique if what one wishes to describe is a boson or
a fermion, as given systems with known degrees of freedom. But the procedure
of abstraction suggests three natural ways in which our theory might be modified.
The first way would make for a more restrictive theory; the other two entail further
abstraction, thus allowing for a more general one.

(a) The conformal symmetry group (Sect. 5.3.2-(i)) was used to form the envelop-
ing algebra. Hence it is realised by the states and the quantities, in the sense that
the states and quantities form representations of this symmetry group. But one can
construct a new theory in which the class of operators is reduced: namely, by plac-
ing restrictions on the conformal transformation properties of the quantities. This
leads to a theory with a smaller set of quantities (and subsequently to bosonic and
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fermionic models with smaller sets of quantities). Alternatively, one can reduce the
space of states by placing similar restrictions on them.

(b) The affine current symmetry algebra (Sect. 5.3.2-(ii)) limited the set of quan-
tities to those that can be constructed from the currents (J (z), J̄ (z̄), T (z), T̄ (z̄)) (as
mentioned at the start of this subsection). But one might decide that this is not a sym-
metry algebra one wishes to keep, for the physical system of interest; (for example, in
the presence of mass terms, this symmetry algbera will be dropped). One then allows
a larger class of, or even all, self-adjoint, renormalisable operators constructed from
(31), not just the ones that preserve this symmetry algebra. In this way, one clearly
gets a richer theory (with a larger set of operators and states), of which Sect. 4’s two
models are still representations.42 And as we stressed in Sect. 3.2.2, it is a matter of
physical judgment, which kinds of operators one needs to admit in order to describe
the physics at hand. In particular: if one wants to add a mass, one is forced to gen-
eralise the theory in this way. The boson-fermion duality continues to hold, thanks
to the existence of the maps Eqs. (31) and (34). But we get a more general class of
theories, which will not necessarily be each other’s duals: the generality of the class
depends on which additional set of operators one takes on board with the quantities.
This will be illustrated explicitly in Sect. 5.5.

(c) Though the two models share the spacetime coordinates z, z̄, these coordi-
nates do not enter the basic considerations that led to building the states, quan-
tities, and dynamics of the theory, in Sects. 5.2.1–5.2.3. Indeed, the basic object
of interest, in constructing the triple, is the algebra of the mode operators Ln and
Jn (and powers of them): and these are spacetime-independent. Furthermore, these
modes contain essentially the same information as the spacetime-dependent currents
(J (z), J̄ (z̄), T (z), T̄ (z̄)), i.e. the latter can be reconstructed from the former through
the Laurent expansions (24), which take identical form in the fermionic case. So, one
might decide that z, z̄ are just book-keeping devices with no essential information
about the theory. On this view, one can construct a theory just based on the alge-
bra (25) and its representations, without its spatio-temporal realization. The bosonic
and fermionic model triples then still form (spatio-temporal) representations of this
algebra: but one can envisage the existence of other representations, which are not
spatio-temporally realised. This would presumably give rise to non-isomorphicmod-
els, in the sense of Sects. 2.4 and 5.3.1.While doing awaywith spacetimemay seem a
radical suggestion, it is not so uncommon: think e.g. of spin chains as possiblemodels.

Point (a) is a straightforward modification of our theory, but also of the models.
So it should not be seen as illustrating the limitations of abstraction, in the sense
of Sects. 2.4 and 5.3.1. Rather, it is a method to obtain more restrictive theories, by
consistently strengthening the symmetry requirements of the models.

But points (b) and (c) do illustrate our remarks, in Sects. 2.4 and 5.3.1, about the
need for models to be ‘sufficiently varied’. By taking, in (b) and (c), some of the

42Notice that the ambiguity here is in the best definition of the theory, not of the duality:
cf. footnote 41.
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symmetry shared by the models to be accidental, one gets a larger class of models,
which is likely to include non-isomorphic ones.

In the next subsection,wewill give such examples of dualities between isomorphic
models which are more general: either because they have less symmetry, or because
they have more fields, with additional symmetries.

5.5 General Boson-Fermion Dualities

In this Subsection, we briefly discuss two generalizations of our basic duality. The
two generalizations are important for our discussion since they fulfill, even better
than our basic duality does, Sect. 1.2’s two desiderata for the choice of examples of
dualities. Recall that these desiderata were: on the one hand, (i) an example should be
mathematically precise and represent established physics; and on the other hand, (ii)
an example should be scientifically important (as described more fully in Sect. 2.1).

As we will see, these desiderata will be amply fulfilled by this Subsection’s
two generalizations. The first generalization especially illustrates scientific impor-
tance. The second illustrates, not so much mathematical precision per se: but rather,
mathematical richness and generality, thus showing that the boson-fermion duality
described in this Section is not an isolated ‘coincidence’ that holds for free, massless
models, but part of a very rich class of mathematically interesting (as well as rigor-
ous!) isomorphic models. Thus we will here define a rich class of theories, each of
which is an equivalence class of exactly two isomorphic model triples.

We will discuss the two kinds of generalization in turn, in the next two subsec-
tions. Section5.5.1 discusses the duality between themassive Thirringmodel and the
sine-Gordon model. Section5.5.2 considers non-abelian versions of boson-fermion
duality. In both cases, we must be brief and must suppress technical details.

5.5.1 Duality Between the Thirring Model and the Sine-Gordon Model

The basic boson-fermion duality can be extended to include mass terms for the
fermions, and interaction terms for both fermions and bosons. This generalisation
is important, because it shows that the duality is not a special property that only
occurs in the free, massless case, in which the action is conformally invariant. Mas-
sive, and interactive, theories are also subject to duality. So this strengthens the
scientific importance of duality: it brings duality into the ‘real world’. In fact, the
Thirring model-sine-Gordon duality is quite important in condensed matter systems.
See Giamarchi [29], Altland and Simons [3].

The massless Thirring model generalises the free, massless Dirac fermion by the
addition of a quartic interaction term for the fermions, with coupling constant g. This
quartic interaction is built from the J -currents, and so preserves the chiral symmetry
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algebra described in (ii), Sect. 4.2. The model can be solved exactly, and the quantum
theory is well-defined only for g > −π [9, p. 2094].43

The fermionicmass term in themassive Thirringmodel explicitly breaks the chiral
symmetry algebra described in (ii), Sect. 4.2. This is because the mass term which
is added to the action of the Dirac fermion, Eq. (26), mixes the left- and right-chiral
(Weyl) fermions. It takes the following form:

�Smass = m
(
ψ̃† ψ + ψ† ψ̃

)
. (37)

Remember that the action (26) did not mix the left-chiral Weyl fermion ψ,ψ† with
the right-chiral Weyl fermion ψ̃, ψ̃†. The above mass term explicitly mixes the two,
and so breaks the chiral symmetry algebra.

The mass term (37) can be translated into a bosonic term using a straightforward
generalisation of the dictionary (31). The generalisation is straightforward in that
it takes the same form, but now depends on a bosonic coupling β, which is related
to the fermionic coupling through (37). The equation of motion of the sine-Gordon
model is:

�φ + μ2

β
: sin(βφ) := 0 , (38)

and so the fermionic coupling is related, through (1), to the bosonic coupling β.
Notice that, to linear order in β, the above reduces to a standard bosonic mass term,
with mass μ. We are here, however, interested in the exact model.

There are divergences that need to be renormalised. The bosonic term correspond-
ing to (37) is:

�S sine-G = μ2

β2
: cosβφ : , (39)

where μ is a scale which originates in the normal ordering procedure, and appears
in the boson-fermion dictionary as an overall multiplicative constant.44

The algebra underlying themodel triple of thismodel is still the enveloping algebra
of the affine Lie algebra with c = 1, but the level now depends on the coupling:
k = β2

4π = 1
1+g/π . We see that in the limit of zero fermionic coupling, we reproduce

the algebra at level 1.
Our discussion, in Sect. 5.2, of the isomorphic model triples, thus generalises to

the massive Thirring and sine-Gordon models, with appropriate modifications. In
both cases, the algebra is the enveloping algebra, now with a coupling-dependent
level. Therefore, the discussion of the states is analogous to the one in Sect. 5.2.1:

43Looking at the relation between the couplings (1) (Sect. 1.2), this will correspond to the value
β2 < ∞ of the bosonic coupling.
44The scale μ is already present in the massless theory. But it does not play any important role,
since it is just an overall renormalisation constant.
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the Hilbert space consists of the highest-weight representations of the enveloping
algebra, and their descendants. The quantities are constructed from a wider class
of operators, compared to our discussion in Sect. 5.2.2. Namely, the quantities now
include non-chiral operators (respectively, operators which break affine current alge-
bra transformations: see Sect. 4.1-(ii) for bosons, Sect. 4.2 for fermions) built from
the fields: such as (38) for the bosons, and (37) for the fermions. Finally, the dynam-
ics is still given by the Hamiltonian, which is the zero component of the Virasoro
generator L0, in the bosonic or fermionic representation. Thus, we get a theory by
abstraction from these two isomorphic triples, as outlined in Sect. 5.3.

As we remarked before, this generalised theory explicitly illustrates our comment
(b) in Sect. 5.4, about the contingent nature of the chiral symmetry algebra. By
allowing the theory to break the chiral symmetry algebra, we get a wider class of
theories (which depend on the coupling and the mass): a class of which the basic
free, massless case is just a special case.

5.5.2 Non-abelian Boson-Fermion Dualities

As we mentioned in this Subsection’s preamble, the free, massless bosons and
fermions can be generalised in another direction [58]: to include non-abelian degrees
of freedom. We will not here provide any technical details, but we will simply list
some of the important examples of dualities studied in the literature; all of which are
conformal field theories, except for (c) and (e):

(a) N free Majorana (real) fermions, in an N -dimensional vector representation
of O(N ). They are dual to the bosonic, Wess-Zumino-Witten (WZW) model with an
O(N ) symmetry group. The Wess-Zumino-Witten model is a model whose action is
built from a bosonic group element (rather than an algebra element), in this case an
N × N matrix of O(N ). The bosonic and fermionic models are both invariant under
the affine Lie algebra transformations of OL(N ) × OR(N ) (for left- and right-action,
respectively) at level k = 1. In both cases, the central charge is c = N/2.

(b) N free, massless Dirac (complex) fermions are dual to a bosonicWZWmodel
with group U(N ). The two models satisfy the affine Lie algebra of SUL(N ) ×
SUR(N ) × U(1), with central charge c = N and k = 1.

(c) Mass terms can be added to the Dirac fermions in case (b), with modifications
in the dictionary and in the bosonic theory which are similar to the ones discussed
in the previous subsection.

(d) The Majorana and Dirac fermion models can be endowed with colour and
flavour charges. Majorana fermions with N F flavours and N C colours, thus trans-
forming under the group [O(N F) × O(N C)] L × [O(N F) × O(N C)] R, are dual to the
Wess-Zumino-Witten action with two bosonic fields, taking values in O(N F) and
O(N C). In the same way, N F × N C Dirac fermions can be expressed as the sum of
two Wess-Zumino-Witten actions, and a third term for an additional field. The three
bosonic fields take values in the groupmanifolds SU(N F), SU(N C), and U(1). Again,
one finds two copies of the affine Lie algebra, now with levels different from one,
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viz. k = N F and k = N F, respectively. This duality can also be generalised to other
gauge groups.

(e) Mass terms can be added to the theories (d) with flavour and colour charges,
with appropriate modifications in the dictionary and in the bosonic theory, as before.

All of the above models end up having model triple structures which are con-
structed as representations of the enveloping algebra of the affine Lie algebra (41) in
the Appendix, for various values of the level, k, and the central charge c, and for dif-
ferent Lie groups. Thus their Hilbert spaces are constructed from the highest-weight
representations, which as we already saw in Sect. 5.2.1 are unique up to unitary trans-
formations. Clearly, all of these theories can be given a set of states, as discussed
in Sect. 5.2.1, of which the bosonic and fermionic models form two representations.
Also, all of these theories are based on the same class of algebras, with generators
Jn and Ln as in (25) for the bosonic case, and likewise for the fermionic case in
Sect. 4.2 and their anti-holomorphic counterparts (see Eq. (41) in the Appendix).
Thus, each of these theories can also be given a set of quantities, in the way dis-
cussed in Sect. 5.2.2. For the non-chiral theories (c) and (e), this set of quantities is
enlarged by the addition of non-chiral quantities, as we already discussed in detail in
the abelian case in Sect. 5.5.1. Finally, the dynamics of these models is as discussed
in Sect. 5.2.3.

In conclusion, this large class of examples, based on a general enveloping algebra
of an affine Lie algebra, exemplifies our schema for duality in Sects. 2 and 3, just as
the basic case did in Sect. 5.2. Namely: a duality is an isomorphism between models.
More specifically: it is an isomorphismbetweenmodel triples; sincemodels also have
their own specific structures. And the theory obtained for each of the dualities accords
with what we said in Sect. 2.4: equivalence classes of isomorphic model triples give
rise to a theory which is itself a triple, in which the models’ specific structures have
been abstracted away. And finally: our comments about non-isomorphic models (in
Sects. 2.4, 5.3.1, and 5.4) are illustrated by the examples (c)–(e). For these models
have less symmetry: the theory which then results is more general.

Envoi

In the physics and philosophy of physics literature, a duality in physics is agreed to
be a matter of two theories being in some sense ‘the same’. In this paper, we have
answered the question how this can be made precise, and illustrated our answer with
a case-study: bosonization.

We have proposed that a duality is best understood formally, i.e. in terms of
uninterpreted theories: hence our term, ‘schema’. Namely: there is a bare theory—
the common core of the two given theories—which has variousmodels, amongwhich
are the two given theories. The duality then consists in the fact that these two models
are isomorphic as regards the structure and notions given in the bare theory. (Thus
each of the two models also has specific structure of its own, which is unmatched by
the other; and the bare theory also has, in general, other non-isomorphic models.)
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Often, this isomorphism is a surprising fact, since the two given theories are presented
in very different terms.

We spelt out this schema in detail, in Sect. 2 and 3. Among the themes we empha-
sized are: (i) the distinction between theories and models, (ii) the role of interpreta-
tion, (iii) the relations between a duality and the symmetries of the two given theories,
and (iv) the presence of non-isomorphic models in physics.

Then in Sects. 4 and 5, we illustrated the schema with bosonization. This is a
matter of a quantum field theory of bosons being in some sense ‘the same’ as a
quantum field theory of fermions. Nowadays, many such boson-fermion pairings are
known. Our discussion emphasized the simplest, and earliest, case, which is known
to hold exactly: a duality between a free, massless bosonic quantum field theory,
and a free, massless fermionic theory, both in two spacetime dimensions. But we
ended with a brief overview of other examples: involving, in particular, interacting
and massive theories. (And there are extensions to higher dimensions: see e.g. [39];
as well as an experimental interest in these systems as realising e.g. one-dimensional
spin chains: Giamarchi [29, Chap.2], Altland and Simons [3, Sects. 4.3 and 9.4.4].)

Our schema, and this illustration of it, of course leaves plenty of work still to
be done. As to physics, one should seek other illustrations of the schema: maybe
some of these will prompt revision, or at least augmentation, of the schema. As to
philosophy, one should ask what light this schema casts on philosophical debates
about the interpretation of physical theories, and about such theories’ equivalence.
But we postpone these topics to another occasion.
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Appendix: Some Elements of Conformal Field Theory

In Sect. 4.1, we used the notion of a primary field. A primary field of conformal
weight (h, h̄) is defined to transform, under a conformal transformation (16), as
follows:

�(z, z̄) →
(

∂ f

∂z

)h (
∂ f̄

∂ z̄

)h̄

�( f (z), f̄ (z̄)) . (40)

This is in analogywith the transformation law for covariant tensors in ordinaryQFTs:
it takes the transformation property of the field under conformal transformations as
defining for the class of primary fields. The physical significance of primary fields
is discussed around Eq. (20).

http://dx.doi.org/10.1007/978-3-319-64813-2_2
http://dx.doi.org/10.1007/978-3-319-64813-2_3
http://dx.doi.org/10.1007/978-3-319-64813-2_4
http://dx.doi.org/10.1007/978-3-319-64813-2_5
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In our analysis in Sects. 4 abd 5, an essential role was played by the enveloping
Virasoro algebra (25), with c = 1 and k = 1. This algebra is a special case of the
following general enveloping algebra of an affine Lie algebra:

[Ln, Lm] = (n − m) Ln+m + c

12
n (n2 − 1) δn+m

[Ln, J
a
m] = −m Jan+m

[Jan , J b
m] = i f abc J c

n+m + k n δab δn+m . (41)

Here, c is the central charge and k is the level, and f abc are the structure constants
of the underlying Lie algebra of the affine Lie algebra. Notice that the above algebra
contains, in the first line, the ordinary Virasoro algebra. And the last line is the affine
Lie algebra. The middle line gives the commutation relation between generators of
the two algebras.45
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The Dressing Field Method of Gauge
Symmetry Reduction, a Review with
Examples

J. Attard, J. François, S. Lazzarini and T. Masson

Abstract Gauge symmetries are a cornerstone ofmodern physics but they comewith
technical difficulties when it comes to quantization, to accurately describe particles
phenomenology or to extract observables in general. These shortcomings must be
met by essentially finding a way to effectively reduce gauge symmetries.We propose
a review of a way to do so which we call the dressing field method. We show how
the BRST algebra satisfied by gauge fields, encoding their gauge transformations, is
modified. We outline noticeable applications of the method, such as the electroweak
sector of the Standard Model and the local twistors of Penrose.

PACS numbers: 02.40.Hw · 11.15.-q · 11.25.Hf

1 Introduction

To this day, modern Field Theory framework (either classical or quantum), so suc-
cessful in describing Nature from elementary particles to cosmology, rests on few
keystones, one of which being the notion of gauge symmetry. Elementary fields are
subject to local transformations which are required to leave invariant the theory (the
Lagrangian). These transformations thus form a so-called local symmetry of the the-
ory, known as gauge symmetry. This notion, originates with Weyl’s 1918 unified
theory resting on the idea of local scale, or gauge, invariance [49, 66, 67]. The
heuristic appeal of gauge symmetries is that imposing them on a theory of free fields
requires, a minima, the introduction of fundamental interactions through minimal
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coupling. This is the content of the so-called gauge principle for Field Theory,1

captured by Yang’s well-known aphorism: “symmetry dictates interaction” [72].2

This is one of themajor conceptual breakthrough of the century separating us from
Hilbert’s lectures on the foundations of mathematics and physics. And the story of
the interactions between gauge theories and differential geometry is a highlight of
the long history of synergy between mathematics and physics.3

In spite of their great theoretical appeal, gauge theories come with some short-
comings. Prima facie indeed, gauge symmetries forbid mass terms for (at least) the
interaction fields, which was known to be in contradiction with the phenomenology
of the nuclear interactions. Also, the quantization of gauge theories via Feynman’s
path integral has its specific problem because integrating on gauge equivalent fields
configurations makes it ill-defined. Finally, it is in general not so straightforward to
extract observables from a gauge theory since the physical content must be gauge
invariant, e.g. the abelian (Maxwell-Faraday) field strength or Wilson loops. This
issue is made acutely clear in General Relativity (GR), where observables must be
diffeomorphic invariant. Addressing these shortcomings essentially boils down to
finding a way to reduce effectively gauge symmetries, in part or completely. One
can think of only a few ways to do so, among which we mention the three most
prominent.

First, gauge fixing: one selects a representative in the gauge orbit of each gauge
field. This is usually the main approach followed to make contact with physical
predictions: one only needs to make sure that the results are independent of the
choice of gauge. This is also how a sensible quantization procedure is carried on,
for example through the Fadeev-Popov procedure. However, a consistent choice of
gauge might not necessarily be possible in all circumstances, a fact known as the
Gribov ambiguity [29, 59].

Second, one can try to implement a spontaneous symmetry breaking mechanism
(SSBM). This is famously known to be the standard interpretation of the Brout-
Englert-Higgs-Guralnik-Hagen-Kibble (BEHGHK) mechanism [10, 30, 31], which
historically solved the masses problem for the weak gauge bosons in the electroweak
unification of Glashow-Weinberg-Salam, and, by extension, of the masses of par-
ticles in the Standard Model of Particles Physics. We stress that this interpretation
presupposes settled the philosophical problem of the ontological status of gauge
symmetries: by affirming that a gauge symmetry can be “spontaneously broken”,
one states that it is a structural feature of reality rather than of our description of it.
While this remains quite controversial in philosophy of physics, given the empirical
success of the BEHGHK mechanism, a pragmatic mind could consider the debate
closed via an inference to the best explanation.Wewill show here that this conclusion
would be hasty.

1See [45] for a critical discussion of its scope and limits.
2 Weyl topped this with an even stronger endorsement of the importance of symmetries in physics:
“As far as I see, all a priori statements in physics have their origin in symmetry” [68].
3See the nice short appendix by S. S. Chern of the book on differential geometry he co-authored
[12].
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Finally, one can seek to apply the bundle reduction theorem. This is a result of
the fiber bundle theory, widely known to be the geometric underpinning of gauge
theories, stating the circumstances under which a bundle with a given structure group
can be reduced to a subbundle with a smaller structure group. Some authors have
recast the BEHGHK mechanism in light of this theorem [60, 63, 65].

In this paper we propose a brief review of another way to perform gauge symmetry
reduction which we call the dressing field method. It is formalized in the language of
the differential geometry offiber bundles and it has a correspondingBRSTdifferential
algebraic formulation. The method boils down to the identification of a suitable field
in the geometrical setting of a gauge theory that allows to construct partially of
fully gauge invariant variables out of the standard gauge fields. This formalizes
and unifies several works and approaches encountered in past and recent literature
on gauge theories, whose ancestry can be traced back to Dirac’s pioneering ideas
[15, 16].

The paper is thus organized. In Sect. 2 we outline the method and state the most
interesting results (pointing to the published literature for proofs), one of which being
the noticeable fact that the method allows to highlight the existence of gauge fields
of a non-standard kind; meaning that these implement the gauge principle but are
not of the same geometric nature than the objects usually encountered in Yang-Mills
theory for instance.

In Sects. 3 and 4 we illustrate the scheme by showing how it is applied to the
electroweak sector of the standard model and to GR. We argue in particular that our
treatment provides an alternative interpretation of the BEHGHK mechanism that is
more in line with the conclusions of the community of philosophers of physics.

In Sect. 5 we address the substantial example of the conformal Cartan bundle
P(M, H) with connection � . Standard formulations of the so-called Tractors and
Twistors can then be found by applying the dressing field method to this geometry.
Furthermore, from this viewpoint they appear to be clear instances of gauge fields
of the non-standard kind alluded to above. This fact, as far as we know, has not been
recognized.

In our conclusion, Sect. 6, we indicate other possible applications of the method
and stress the obvious remaining open questions to be addressed.

2 Reduction of Gauge Symmetries: The Dressing Field
Method

As we have stated, the differential geometry of fiber bundles supplemented by the
BRSTdifferential algebra are themathematical underpinning of classical gauge theo-
ries. So, this is the language inwhichwewill formalize our approach.Complementary
material and detailed proofs can be found in [1, 20, 21, 23].

Let us give the main philosophy of the dressing field method in a fewwords. From
a mathematical point of view, a gauge field theory requires some spaces of fields on
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which the gauge group acts in a definite way. So, to define a gauge field theory,
the spaces of fields themselves are not sufficient: one has to specify the actions of
the gauge group on them. This implies that the same mathematical space can be
considered as a space of different fields, according to the possible actions of the
gauge group.

Generally, the action is related to the way the space of fields is constructed. For
instance, in the usual geometrical framework of gauge field theories, the primary
structure is a principal fiber bundle P , and the gauge group is its group of vertical
automorphisms. Then, the sections of an associated vector bundle to P , constructed
using the action ρ of the structure group on a vector space V , support an action of
the gauge group which is directly related to ρ.

The physical properties of a gauge field theory are generally encoded into a La-
grangian L written in terms of the gauge fields (and their derivatives): it is required
to be invariant when the gauge group acts on all the fields involved in its writing.

The main idea behind the dressing field method is to exhibit a very special field
(the dressing field) out of the gauge fields in the theory, with a specific gauge action.
Then, one performs some change of field variables, very similar to some change of
variables in ordinary geometry, by combining in a convenient way (through sums
and products when they make sense) the gauge fields with the dressing field. The
resulting “dressed fields” (new fields variables of the theory) are then subject to new
actions of the gauge group, that can be deduced from the combination of fields. In
favorable situations, these dressed fields are invariant under the action of a subgroup
of the gauge group: a part of the gauge group does not act anymore on the new fields
of the theory, that is, the symmetry has been reduced.

Notice some important facts. Firstly, the dressed fields do not necessarily belong
to the original space of fields from which they are constructed. Secondly, in general
the dressing (i.e. the combination of the dressing field with a field from the theory)
looks like a gauge transformation. But we insist on the fact that it is not a genuine
gauge transformation. Finally, the choice of the dressing field relies sometimes on
the physical content of the theory, that is on the specific form of the Lagrangian. So,
the dressing field method can depend on the mathematical, as well as on the physical
content of the theory.

Les us now describe the mathematical principles of the method.

2.1 Composite Fields

Let P(M, H) be a principal bundle over a manifoldM equipped with a connection
ωwith curvature�, and let ϕ be a ρ-equivariant V -valuedmap onP to be considered
as a section of the associated vector bundle E = P ×H V .

The group of vertical automorphisms of P ,

Autv(P) := {� : P → P | ∀h ∈ H,∀p ∈ P,�(ph) = �(p)h and π ◦ � = �}



The Dressing Field Method of Gauge Symmetry Reduction, a Review with Examples 381

is isomorphic to the gauge group H := {
γ : P → H | R∗

hγ (p) = h−1γ (p)h
}
, the

isomorphism being �(p) = pγ (p). The composition law of Autv(P), �1 ◦ �2,
corresponds to the product γ1γ2.

In this geometrical settings, the gauge groupH � Autv(P) acts on fields via pull-
backs. It acts on itself as ηγ := �∗η = γ−1ηγ , and on connections ω, curvatures �
and (ρ, V )-tensorial forms ϕ as,

ωγ := �∗ω = γ−1ωγ + γ−1dγ, ϕγ := �∗ϕ = ρ(γ−1)ϕ, (1)

�γ := �∗� = γ−1�γ, (Dϕ)γ := �∗Dϕ = Dγ ϕγ = ρ(γ−1)Dϕ.

These are active gauge transformations, formally identical but to be conceptually
distinguished from passive gauge transformations relating two local descriptions
of the same global objects in local trivializations of the fiber bundle described as
follows. Given two local sections σ1, σ1 of P , related as σ2 = σ1h, either over the
same open set U of M or over the overlap of two open sets U1 ∩ U2, one finds

σ ∗
2ω = h−1σ ∗

1ω h + h−1dh, σ ∗
2 ϕ = ρ(h−1)σ ∗

1 ϕ, (2)

σ ∗
2� = h−1σ ∗

1� h, σ ∗
2 Dϕ = ρ(h−1)σ ∗

1 Dϕ.

This distinction between active and passive gauge transformations is reminiscent of
the distinction between diffeomorphisms and coordinates transformations in GR.

The main idea of the dressing field approach to gauge symmetry reduction is
stated in the following

Proposition 1 [20] Let K and G be subgroups of H such that K ⊆ G ⊂ H. Note
K ⊂ H the gauge subgroup associated with K . Suppose there exists a map

u : P → G satisfying the K -equivariance property R∗
k u = k−1u. (3)

Then this map u, that will be called a dressing field, allows to construct through
f : P → P defined by f (p) = pu(p), the following composite fields

ωu := f ∗ω = u−1ωu + u−1du, ϕu := f ∗ϕ = ρ(u−1)ϕ. (4)

which are K-invariant and satisfy

�u := f ∗� = u−1�u = dωu + 1
2 [ωu, ωu],

Duϕu := f ∗Dϕ = ρ(u−1)Dϕ = dϕu + ρ∗(ωu)ϕu .

These composite fields are K -horizontal and thus project on the quotient P/K.

The K-invariance of the composite fields (4) is most readily proven. Indeed from
the definition (3) one has f (pk) = f (p) so that f factorizes through a map P →
P/K and given�(p) = pγ (p)with γ ∈ K ⊂ H, one has�∗ f ∗ = ( f ◦ �)∗ = f ∗.
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The dressing field can be equally defined by its K-gauge transformation:
uγ = γ−1u, for any γ ∈ K ⊂ H. Indeed, given � associated to γ ∈ K and (3):
(uγ )(p) := �∗u(p) = u(�(p)) = u(pγ (p)) = γ (p)−1u(p) = (γ−1u)(p).

Several comments are in order. First, (4) looks algebraically like (1): this makes
easy to check algebraically that the composite fields are K-invariant. Indeed, let
χ ∈ {ω,�, ϕ, . . .} denote a generic field when performing an operation that applies
equally well to any specific one. For two maps α, α′ with values in H , if one defines
χα algebraically as in (1), then one has the left action (χα)α

′ = χαα′
. This is for

instance the usual way to compose the actions of two elements of the gauge group.
But this relation is independent of the specific action of the gauge group on α and α′,
which could belong to different representation spaces ofH. Then (χu)γ = (χγ )u

γ =
(χγ )γ

−1u = χu , where the last (and essential) equality is the one emphasized above.
Second, if K = H , then the composite fields (4) areH-invariant, the gauge sym-

metry is fully reduced, and they live on P/H � M. This shows that the existence
of a global dressing field is a strong constraint on the topology of the bundle P: a K -
dressing fieldmeans that the bundle is trivial along the K -subgroup,P � P/K × K ,
while a H -dressing field means its triviality, P � M × H [20, Prop. 2].

Third, in the event that G ⊃ H , then one has to assume that the H -bundle P is
a subbundle of a G-bundle, and mutatis mutandis the proposition still holds. Such a
situation occurs for instance when P is a reduction of a frame bundle (of unspecified
order), see Sect. 4 for an example.

Notice that despite the formal similarity with (1) [or (2)], the composite fields (4)
are not gauge transformed fields. Indeed, the defining equivariance property (3) of
the dressing field implies u /∈ H, and f /∈ Autv(P). As a consequence, in general the
composite fields do not belong to the gauge orbits of the original fields: χu /∈ O(χ).
Another consequence is that the dressing field method must not be confused with a
simple gauge fixing.

2.2 Residual Gauge Symmetry

Suppose there is a normal subgroup K and a subgroup J of H such that any h ∈ H
can be uniquely written as h = jk for j ∈ J and k ∈ K . Then H = J K and J �
H/K , whose Lie algebra is denoted by j. Such a situation occurs for instance with
H = J × K . Several examples are based on this structure, see for instance Sects. 3
and 5.

The quotient bundle P/K is then a J -principal bundle P ′ = P ′(M, J ), with
gauge group J � Autv(P ′). The residual gauge symmetry of the composite fields
depends, on the one hand, on that of the gauge fields, and, on the other hand, on that of
the dressing field. A classification of the numerous possible situations is impractical,
but below we provide the general treatment of two most interesting cases.
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2.2.1 The Composite Fields as Genuine Gauge Fields

With the previous decomposition of H , our first case is summarized in this next
result.

Proposition 2 Let u be a K -dressing field onP . Suppose its J -equivariance is given
by

R∗
j u = Ad j−1u, for any j ∈ J. (5)

Then, the dressed connectionωu is a J -principal connection onP ′. That is, for X ∈ j
and j ∈ J , ωu satisfies: ωu(Xv) = X and R∗

jω
u = Ad j−1ωu. Its curvature is given

by �u. Also, ϕu is a (ρ, V )-tensorial map on P ′ and can be seen as a section of the
associated bundle E ′ = P ′ ×J V . The covariant derivative on such sections is given
by Du = d + ρ(ωu).

From this we immediately deduce the following

Corollary 3 The transformation of the composite fields under the residualJ -gauge
symmetry is found in the usual way to be

(ωu)γ
′ := �′∗ωu = γ ′−1

ωuγ ′ + γ ′−1dγ ′, (ϕu)γ
′ := �′∗ϕu = ρ(γ ′−1

)ϕu ,

(�u)γ
′ := �′∗�u = γ ′−1

�uγ ′, (Duϕu)γ
′ := �′∗Duϕu = ρ(γ ′−1

)Duϕu ,

(6)

with �′ ∈ Aut(P ′) � J  γ ′.

A quick way to convince oneself of this is to observe that for �′ ∈ Autv(P ′) one
has, using (5),

(
uγ

′)
(p) := (�′∗u)(p) = u(�′(p)) = u(pγ ′(p)) = γ ′(p)−1

u(p)γ ′(p) = (γ ′−1uγ ′)(p). So, using again the generic variable χ one finds that
(χu)γ

′ = (χγ ′
)u

γ ′ = (χγ ′
)γ

′−1uγ ′ = χuγ ′
, which proves (6). In field theory, the rela-

tion uγ
′ = γ ′−1uγ ′ can be preferred to (5) as a condition on the dressing field u.

The above results show that when (5) holds, the composite fields (4) are K-
invariant but genuine J -gauge fields with residual gauge transformations given by
(6). Itmay then be possible to perform a further dressing operation provided a suitable
dressing field exists and satisfies the compatibility condition of being invariant under
the K-gauge subgroup just erased. The extension of this scheme to any number of
dressing fields can be found in [21]. Let us now turn to our next interesting case.

2.2.2 The Composite Fields as Twisted-Gauge Fields

To define these gauge fields with a new behavior under the action of the gauge
group, we need to introduce some definitions. Let G ′ ⊃ G be a Lie group for which
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the representation (ρ, V ) of G is also a representation of G ′. Let us assume the
existence of a C∞-map C : P × J → G ′, (p, j) �→ Cp( j), satisfying

Cp( j j
′) = Cp( j)Cpj ( j

′). (7)

From thiswehave thatCp(e) = e,with e the identity in both J andG ′, andCp( j)−1 =
Cpj ( j−1). Its differential is

dC|(p, j) = dC( j)|p + dCp| j : TpP ⊕ Tj J → TCp( j)G
′,

where ker dC( j) = Tj J and ker dCp = TpP , and where dC( j) (resp. dCp) uses the
differential onP (resp. J ). Notice that Cp( j)−1dC|(p, j) : TpP ⊕ Tj J → TeG ′ = g′.
We then state the following result.

Proposition 4 Let u be a K -dressing field onP . Suppose its J -equivariance is given
by

(R∗
j u)(p) = j−1u(p)Cp( j), with j ∈ J and C a map as above. (8)

Then ωu satisfies

1. ωu
p(X

v
p) = cp(X) := d

dt Cp(et X )|t=0, for X ∈ j and Xv
p ∈ VpP ′.

2. R∗
jω

u = C( j)−1ωuC( j) + C( j)−1dC( j).

The dressed curvature�u is J -horizontal and satisfies R∗
j�

u = C( j)−1�uC( j). Al-

so, ϕu is a ρ(C)-equivariant map, R∗
jϕ

u = ρ (C( j))−1 ϕu. The first order differential
operator Du := d + ρ∗(ωu) is a natural covariant derivative on suchϕu so that Duϕu

is a (ρ(C), V )-tensorial form: R∗
j D

uϕu = ρ (C( j))−1 Duϕu and (Duϕu)p(Xv
p) = 0.

This proposition shows that ωu behaves “almost as a connection”: we call it a
C-twisted connection 1-form. There is a natural geometric structure to interpret the
dressed field ϕu . Omitting the representation ρ of G ′ on V to simplify notations, we
can define the following equivalence relation on P × V :

(p, v) ∼ (pj,Cp( j)
−1v) for any p ∈ P, v ∈ V, and j ∈ J.

Using the properties of the mapC , it is easy to show that this is indeed an equivalence
relation. In particular, one has (pj j ′,Cp( j j ′)−1v) ∼ (pj j ′,Cpj ( j ′)−1Cp( j)−1v) ∼
(pj,Cp( j)−1v) ∼ (p, v). Then one can define the quotient vector bundle over M

E = P ×C(J ) V := (P × V )/∼ (9)

that we call aC(J )-twisted associated vector bundle toP . Notice that when J = {e},
one has E = P × V . Adapting standard arguments in fiber bundle theory, one can
show that sections of E are C(J )-equivariant maps

ϕ : P → V such that ϕ(pj) = Cp( j)
−1ϕ(p) for any p ∈ P, j ∈ J.
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The dressing field ϕu is then a section of E satisfying ϕu(pk) = ϕu(p) for any
p ∈ P and k ∈ K by construction.

We can now deduce the transformations of the composite fields under the resid-
ual gauge group J . Consider � ∈ Autv(P ′) � J  γ , where γ : P → J satisfies
γ (pk) = γ (p) and γ (pj) = j−1γ (p) j for any p ∈ P , k ∈ K and j ∈ J , and define
the map C(γ ) : P → G ′, p �→ Cp (γ (p)), given by the compositions

P � P × P id×γ P × J
C

G ′

p (p, p) (p, γ (p)) Cp(γ (p))

Its differentialdC(γ )|p : TpP → TCp(γ (p))G
′ is givenbydC(γ ) = dC ◦ (id ⊕ dγ ) ◦

d�, and we have Cp (γ (p))
−1 dC(γ )|p : TpP → TeG ′ = g′. The residual gauge

transformation of the dressing field is then
(
uγ

)
(p) := (�∗u)(p) = u(pγ (p)) =

γ (p)−1u(p)Cp
(
γ (p)

) = (
γ−1uC(γ )

)
(p), that is

uγ = γ−1uC(γ ). (10)

This relation can be taken as an alternative to (8) as a condition on the dressing field
u. We have then the following proposition.

Proposition 5 Given � ∈ Autv(P ′) � J  γ , the residual gauge transformations
of the composite fields are

(ωu)γ := �∗ωu = C(γ )−1ωuC(γ ) + C(γ )−1dC(γ ),

(ϕu)γ := �∗ϕu = ρ
(
C(γ )−1

)
ϕu,

(�u)γ := �∗�u = C(γ )−1�uC(γ ),

(Duϕu)γ := �∗Duϕu = ρ
(
C(γ )−1

)
Duϕu . (11)

This shows that the composite fields (4) behave as gauge fields of a new kind, on
which the implementation of the gauge principle is factorized through the map C .
Given (10) and the usualJ -gauge transformations for the standard gauge fieldsχ , the
above results can be obtained by a direct algebraic calculation: (χu)γ = (χγ )u

γ =
(χγ )γ

−1uC(γ ) = χuC(γ ).
Under a further gauge transformation� ∈ Autv(P ′) � η ∈ J , there are twoways

to compute the composition �∗(�∗u) of the two actions: first we use the compo-
sition inside the gauge group, (� ◦ �)(p) = pγ (p)η(p), so that (�∗(�∗u)) (p) =
((� ◦ �)∗u) (p) = u (pγ (p)η(p)) = η(p)−1γ (p)−1u(p)Cp

(
γ (p)η(p)

)
; secondly,

we compute the actions successively,

(
�∗(�∗u)

)
(p) =

(
γ−1uC(γ )

)
(�(p)) = γ (pη(p))−1 u (pη(p))Cpη(p) (γ (pη(p))

= η(p)−1γ (p)−1η(p) · η(p)−1u(p)Cp (η(p)) · Cpη(p)

(
η(p)−1γ (p)η(p)

)

= η(p)−1γ (p)−1u(p)Cp (γ (p)η(p)) .
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In both cases,�∗(�∗u) = η−1γ−1 u C (γ η), which secures the fact that the actions
(11) of the residual gauge symmetry on the composite fields are well behaved as
representations of the residual gauge group, even if C is not a group morphism.

Ordinary connections correspond to Cp( j) = j for any p ∈ P ′ and j ∈ J , in
which case, it is a group morphism.

The case of 1-α-cocycles. For a p ∈ P ′, suppose given Cp : J → G ′ satisfying
Cp( j j ′) = Cp( j) α j [Cp( j ′)] for α : J → Aut(G ′) a continuous group morphism.
Such anobject appears in the representation theoryof crossedproducts ofC∗-algebras
and is known as a 1-α-cocycle (see [50, 69]).4 Then, definingCpj ( j ′) := α j [Cp( j ′)],
one has an example of (7), and the above result applies to the 1-α-cocycle C . As a
particular case, consider the following

Proposition 6 Suppose J is abelian and let Ap, B : J → GLn be group morphism-
s where R∗

j Ap( j ′) = B( j)−1Ap( j ′)B( j). Then Cp := ApB : J → GLn is a 1-α-
cocyle with α : J → Aut(GLn) defined by α j [g] = B( j)−1gB( j) for any g ∈ GLn.

Using the commutativity of J through B( j)B( j ′) = B( j j ′) = B( j ′ j) = B( j ′)B( j),
the proposition is proven asCp( j j ′) = Ap( j j ′)B( j j ′) = Ap( j)Ap( j ′)B( j)B( j ′) =
Ap( j)B( j) B( j)−1[Ap( j ′)B( j ′)]B( j) = Cp( j) B( j)−1[Cp( j ′)]B( j). Notice also
thatwe haveCp( j j ′) = Cp( j ′ j) = Cp( j ′) B( j ′)−1[Cp( j)]B( j ′). Such 1-α-cocycles
will appear in the case of the conformal Cartan geometry and the associated Tractors
and Twistors in Sect. 5.

2.3 Application to the BRST Framework

2.3.1 The BRST Differential Algebra

The BRST differential algebra captures the infinitesimal version of (1). Abstractly
(see for instance [17]) it is a bigraded differential algebra generated by {ω,�, v, ζ }
where v is the so-called ghost and the generators are respectively of degrees (1, 0),
(2, 0), (0, 1) and (1, 1). It is endowed with two nilpotent antiderivations d and s,
homogeneous of degrees (1, 0) and (0, 1) respectively, with vanishing anticommu-
tator: d2 = 0 = s2, sd + ds = 0. The algebra is equipped with a bigraded commu-
tator [α, β] := αβ − (−)deg[α]deg[β]βα. The action of d is defined on the generators
by: dω = � − 1

2 [ω,ω] (Cartan structure equation), d� = [�,ω] (Bianchi identity),
dv = ζ and dζ = 0. The action of the BRST operator on the generators gives the
usual defining relations of the BRST algebra,

sω = −dv − [ω, v], s� = [�, v], and sv = − 1
2 [v, v]. (12)

4In the general theory the group G ′ is replaced by a C∗-algebra A.
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When the abstract BRST algebra is realized in a differential geometrical frame-
work, the bigrading is according to the de Rham form degree and ghost degree: d is
the de Rham differential on P (or M if one works in local trivializations) and s is
the de Rham differential on H. The ghost is the Maurer-Cartan form on H so that
v ∈ ∧1

(H,LieH), and given ξ ∈ TH, v(ξ) : P → h ∈ LieH [7]. So in practice the
ghost can be seen as a map v : P → h ∈ LieH, a placeholder that takes over the
role of the infinitesimal gauge parameter. Thus the first two relations of (12) (and
(13) below) reproduce the infinitesimal gauge transformations of the gauge fields
(1), while the third equation in (12) is the Maurer-Cartan structure equation for the
gauge group H. The BRST transformations of the section ϕ (of degrees (0, 0)) and
its covariant derivative are

sϕ = −ρ∗(v)ϕ, and sDϕ = −ρ∗(v)Dϕ. (13)

where ρ∗ is the representation of the Lie algebra induced by the representation ρ of
the group.

TheBRST framework provides an algebraic characterization of relevant quantities
in gauge theories, such as admissible Lagrangian forms, observables and anomalies,
all of which are required to belong to the s-cohomology group H∗,∗(s) of s-closed
but not s-exact quantities.

2.3.2 Modified BRST Differential Algebra

Since the BRST algebra encodes the infinitesimal gauge transformations of the gauge
fields, it is expected that the dressing field method modifies the former. To see how,
let us first consider the following

Proposition 7 Consider the BRST algebra (12)–(13) on the initial gauge variables
and the ghost v ∈ LieH. Introducing the dressed ghost

vu = u−1vu + u−1su, (14)

the composite fields (4) satisfy the modified BRST algebra:

sωu = −Duvu = −dvu − [ωu, vu], sϕu = −ρ∗(vu)ϕu,

s�u = [�u, vu], svu = − 1
2 [vu, vu].

This result does not rest on the assumption that u is a dressing field.

The result is easily found by expressing the initial gauge variable χ = {ω,�, ϕ}
in terms of the dressed fields χu and the dressing field u, and re-injecting in the initial
BRST algebra (12)–(13). At no point of the derivation does su need to be explicitly
known. It then holds regardless if u is a dressing field or not.
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If the ghost v encodes the infinitesimal initial H-gauge symmetry, the dressed
ghost vu encodes the infinitesimal residual gauge symmetry. Its concrete expression
depends on the BRST transformation of u.

Under the hypothesis K ⊂ H , the ghost decomposes as v = vk + vh/k, and the
BRST operator splits accordingly: s = sk + sh/k. If u is a dressing field its BRST
transformation is the infinitesimal version of its defining transformation property:
sku = −vku. So the dressed ghost is

vu = u−1vu + u−1su = u−1(vk + vh/k)u + u−1(−vku + sh/ku)

= u−1vh/ku + u−1sh/ku.

The LieK part of the ghost, vk, has disappeared. This means that skχu = 0, which
expresses the K-invariance of the composite fields (4).

Residual BRST symmetry If K ⊂ H is a normal subgroup, then H/K = J is a
group with Lie algebra h/k = j. We here provide the BRST treatment of the two
cases detailed in Sect. 2.2.

Suppose the dressing field satisfies the condition (5), whose BRST version is
sju = [u, vj]. The dressed ghost is then

vu = u−1vju + u−1sju = u−1vju + u−1(uvj − vju) = vj. (15)

This in turn implies that the new BRST algebra is

sωu = −Duvj = −dvj − [ωu, vj], sϕu = −ρ∗(vj)ϕu,

s�u = [�u, vj], svj = − 1
2 [vj, vj]. (16)

This is the BRST version of (6), and reflects the fact that the composite fields (4) are
genuine J -gauge fields, in particular that ωu is a J -connection.

Suppose now that the dressing field satisfies the condition (8), whose BRST ver-
sion is sju = −vju + ucp(vj). The dressed ghost is then

vu = u−1vju + u−1sju = u−1vju + u−1 (−vju + ucp(vj)
) = cp(vj). (17)

This in turn implies that the new BRST algebra is

sωu = −dcp(vj) − [ωu, cp(vj)], sϕu = −ρ∗(cp(vj))ϕu,

s�u = [�u, cp(vj)], scp(vj) = − 1
2 [cp(vj), cp(vj)]. (18)

This is the BRST version of (11), and reflects the fact that the composite fields (4)
instantiate the gauge principle in a satisfactory way.

To conclude we mention that the dressing operation is compatible with Stora’s
method of altering a BRST algebra so that it describes the action of infinitesimal
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diffeomorphisms of the base manifold on the gauge fields, in addition to their gauge
transformations, as described in [36, 61] for instance: details can be found in [24].

2.4 Local Construction and Physics

Until now, we have been focused on the global aspects of the dressing approach on
the bundle P to emphasize the geometric nature of the composite fields obtained.
Most notably we showed that the composite field can behave as “generalized” gauge
fields. But to do physics we need the local representatives on an open subset U ⊂ M
of global dressing and composite fields. These are obtained in the usual way from
a local section σ : U → P of the bundle. The important properties they thus retain
are their gauge invariance and their residual gauge transformations.

If it happens that a dressing field is defined locally onU first, and not directly onP ,
then the local composite fieldsχu are defined in terms of the local dressing field u and
local gauge fields χ by (4). The gauge invariance and residual gauge transformations
of these local composite fields are derived from the gauge transformations of the local
dressing field under the various subgroups of the local gauge group Hloc according
to (χu)γ = (χγ )u

γ

. The BRST treatment for the local objects mirrors exactly the one
given for global objects.

This being said, note A = σ ∗ω and F = σ ∗� for definiteness but keep u and ϕ

to denote the local dressing field and sections of the associated vector bundle E .
Suppose that the base manifold is equipped with a (r, s)-Lorentzian metric allowing
for a Hodge star operator, and that V is equipped with an inner product 〈 , 〉. We state
the final proposition dealing with gauge theory.

Proposition 8 Given the geometry defined by a bundle P(M, H) endowed with ω

and the associated bundle E, suppose we have a gauge theory given by the proto-
typical Hloc-invariant Yang-Mills Lagrangian

L(A, ϕ) = 1
2 Tr(F ∧ ∗F) + 〈Dϕ, ∗Dϕ〉 −U (‖ϕ‖) vol,

where vol is the metric volume form on M, ‖ϕ‖ := |〈ϕ, ϕ〉|1/2 and U is a potential
term.5 If there is a local dressing field u : U → G ⊂ H withKloc-gauge transforma-
tion uγ = γ−1u, then the above Lagrangian is actually a “Hloc/Kloc-gauge theory”
defined in terms of Kloc-invariant variables since we have

L(A, ϕ) = L(Au, ϕu) = 1
2 Tr(F

u ∧ ∗Fu) + 〈Duϕu, ∗Duϕu〉 −U (‖ϕu‖) vol .

The relation L(A, ϕ) = L(Au, ϕu) is satisfied since, as already noticed, relations
(4) look algebraically like gauge transformations (1) under which L is supposed to
be invariant in a formal way.

5For instance, such a term is the one for a spontaneous symmetry breaking mechanism.
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The terminology “Hloc/Kloc-gauge theory” means that the Lagrangian is written
in terms of fields which are invariant under the action of γ : U → K . Since the
quotient H/K needs not be a group, the remaining symmetries of the fields might
not be described in terms of a group action.

Notice that since u is a dressing field, u /∈ Hloc, so the dressed Lagrangian
L(Au, ϕu) ought not to be confused with a gauge-fixed Lagrangian L(Aγ , ϕγ ) for
some chosen γ ∈ Hloc, even if it may happen that γ = u as fields if one forgets
about the corresponding representations of the gauge group, a fact that might go
unnoticed. As we have stressed in Sect. 2, the dressing field approach is distinct from
both gauge-fixing and spontaneous symmetry breaking as a means to reduce gauge
symmetries.

Let us highlight the fact that a dressing field can often be constructed by requiring
the gauge invariance of a prescribed “gauge-like condition”. Such a condition is
given when a local gauge field χ (often the gauge potential) transformed by a field u
with value in the symmetry group H , or one of its subgroups, is required to satisfy
a functional constraint: �(χu) = 0. Explicitly solved, this makes u a function of
χ , u(χ), thus sometimes called field dependent gauge transformation. However this
terminology is valid if and only if u(χ) transforms under the action of γ ∈ Hloc

as u(χ)γ := u(χγ ) = γ−1u(χ)γ , in which case u(χ) ∈ Hloc. But if the functional
constraint still holds under the action ofHloc, or of a subgroup thereof, it follows that
(χγ )u

γ = χu (or equivalently that sχu = 0). This in turn suggests that uγ = γ−1u
(or su = −vu) so that u /∈ Hloc but is indeed a dressing field.

This, and the above proposition, generalize the pioneering idea of Dirac [15,
16] aiming at quantizing QED by rewriting the classical theory in terms of gauge-
invariant variables. The idea was rediscovered several times and sometimes termed
Dirac variables [37, 54]. They reappeared in various contexts in gauge theory, such
as QED [38], quarks theory in QCD [40], the proton spin decomposition controversy
[22, 42, 43]. The dressing field approach thus gives a unifying and clarifying frame-
work for these works, and others concerning the BRST treatment of anomalies in
QFT [28, 44], Polyakov’s “partial gauge fixing” for 2D-quantum gravity [41, 55] or
the construction of the Wezz-Zumino functionnal [3].

In the following we provide examples of significant applications of the dressing
field approach in various contexts: the electroweak sector of the Standard Model, the
tetrad vsmetric formulation ofGR, and tractors and twistors obtained fromconformal
Cartan geometry.

3 The Electroweak Sector of the Standard Model

The aim of the electroweak model is to give a gauge theoretic account of the fact that
there is one long range interaction mediated by a massless boson, electromagnetism,
together with a short range interaction mediated by massive bosons, the weak inter-
action. Here we discard the spinors (matter fields) of the theory and consider only
the theory describing the gauge potentials and the scalar field. The spinors could
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be treated along the lines of the following exposition. More details can be found in
[21, 46].

3.1 Reduction of the SU(2)-symmetry via Dressing

The principal bundle of the model is P (M,U (1) × SU (2)) and it is endowed with
a connection whose local representative is A = a + b. Its curvature is F = fa + gb.
The defining representation of the structure group is (C2, �), with � the left matrix
multiplication. The associated vector bundle is E = P ×� C

2 and we denote by
ϕ : U ⊂ M → C

2 a (local) section. The covariant derivative is Dϕ = dϕ + (g′a +
gb)ϕ, with g′, g the coupling constants of U (1) and SU (2) respectively. The action
of the gauge group H = U(1) × SU(2) (we drop the subscript “loc” from now on)
is,

aα = a + 1
g′ α

−1dα, bα = b, ϕα = α−1ϕ,

aβ = a, bβ = β−1bβ + 1
gβ

−1dβ, ϕβ = β−1ϕ,

where α ∈ U(1) and β ∈ SU(2). The structure of direct product group is clear. The
H-invariant Lagrangian form of the theory is,

L(a, b, ϕ) = 1
2 Tr(F ∧ ∗F) + 〈Dϕ, ∗Dϕ〉 −U (‖ϕ‖) vol,

= 1
2 Tr( fa ∧ ∗ fa) + 1

2 Tr(gb ∧ ∗gb) (19)

+ 〈Dϕ, ∗Dϕ〉 − (
μ2〈ϕ, ϕ〉 + λ〈ϕ, ϕ〉2) vol,

where μ, λ ∈ R. This gauge theory describes the interaction of a doublet scalar field
ϕ with two gauge potentials a and b. As it stands, nor a nor b can be massive, and
indeed L contains no mass term for them. It is not a problem for a since we expect
to have at least one massless field to carry the electromagnetic interaction. But the
weak interaction is short range, so its associated field must be massive. Hence, it
is necessary to reduce the SU (2) gauge symmetry in the theory in order to allow
a mass term for the weak field. Of course we, know that this can be achieved via
SSBM. Actually, the latter is used in conjunction with a gauge fixing, the so-called
unitary gauge, see e.g. [6]. Some authors have given a more geometrical account of
the mechanism based on the bundle reduction theorem, see [60, 63, 65].

We now show that the SU(2) symmetry can be erased via the dressing field
method. Given the gauge transformations as above, we define a dressing field out of
the doublet scalar field ϕ by using a polar decomposition ϕ = uη in C

2 with

u ∈ SU (2) and η :=
(

0
‖ϕ‖

)
∈ R

+ ⊂ C
2, so that uβ = β−1u, (20)
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as can be checked explicitly. Then u is a SU(2)-dressing field that can be used to
apply Prop. 1 and to construct the SU(2)-invariant composite fields

Â = u−1Au + 1
g u

−1du = a + (u−1bu + 1
g u

−1du) =: a + B,

F̂ = u−1Fu = fa + u−1gbu =: fa + G, with G = dB + gB2,

ϕ̂ = u−1ϕ = η, and D̂ϕ̂ = u−1Dϕ = D̂η = dη + (g′a + gB)η. (21)

By virtue of Prop. 8, we conclude that the theory defined by the electroweak La-
grangian (19) is actually a U(1)-gauge theory described in terms of the above com-
posite fields,

L(a, B, η) = 1
2 Tr(F̂ ∧ ∗F̂) + 〈D̂η, ∗D̂η〉 −U (η) vol,

= 1
2 Tr( fa ∧ ∗ fa) + 1

2 Tr(G ∧ ∗G) + 〈D̂η, ∗D̂η〉 − (
μ2η2 + λη4

)
vol .
(22)

Notice that by its very definition ηβ = ηα = η, so it is already a fully gauge invariant
scalar field which then qualifies as an observable.

3.2 Residual U(1)-symmetry

Is a mass term allowed for the SU(2)-invariant field B? To answer the question, one
needs to check its U(1)-residual gauge transformation Bα , which depends on the
U(1)-gauge transformation of the dressing field u. One can check that

uα = uα̃, where α̃ =
(
α 0
0 α−1

)
.

We therefore have

Bα = (bα)u
α = α̃−1u−1buα̃ + 1

g α̃
−1(u−1du)̃α + 1

g α̃
−1dα̃ = α̃−1Bα̃ + 1

g α̃
−1dα̃,

Gα = (gαb )
uα = α̃−1u−1gbu α̃ = α̃−1Gα̃.

In view of this, it would seem that B still cannot have mass terms. But given the
decomposition B = Baσ

a where σ a are the Hermitian Pauli matrices and Ba ∈ iR,
so that B̄a = −Ba , we have explicitly

B = Baσ
a =

(
B3 B1 − i B2

B1 + i B2 −B3

)
=:

(
B3 W−
W+ −B3

)
,

and
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Bα =
(
B3 + 1

gα
−1dα α−2W−

α2W+ −B3 − 1
gα

−1dα

)

.

The fieldsW± transform tensorially underU(1), and so they can be massive: they are
the (U (1)-charged) particles detected in the SPS collider in January 1983. The field
B3 transforms as a U (1)-connection, making it another massless field together with
the genuine U (1)-connection a. Considering (a, B3) as a doublet, one can perform
a natural change of variables

(
A
Z0

)
:=

(
cos θW sin θW

− sin θW cos θW

)(
a
B3

)
=

(
cos θWa + sin θW B3

cos θW B3 − sin θWa

)
,

where the so-calledWeinberg (orweakmixing) angle is defined by cos θW = g/
√
g2 + g′2

and sin θW = g′/
√
g2 + g′2. By construction, it is easy to show that the 1-form Z0 is then

fully gauge invariant and can therefore be both massive and observable: it is the
neutral weak field whose boson has been detected in the SPS collider in May 1983.
Now, still by construction, we have Aβ = A and Aα = A + 1

eα
−1dα with coupling

constant e := gg′/
√
g2 + g′2 = g′ cos θW = g sin θW . So A is aU (1)-connection: it is the

massless carrier of the electromagnetic interaction and e is the elementary electric
charge.

The electroweak theory (22) is then expressed in terms of the gauge invariant
fields η, Z0 and of the U (1)-gauge fields W±, A:

L(A,W±, Z0, η) = 1
2 Tr(F̂ ∧ ∗F̂) + 〈Dη, ∗Dη〉 −U (η) vol

= dZ0 ∧ ∗dZ0 + d A ∧ ∗d A + dW− ∧ ∗dW+

+ 2g

{
sin θW

(
d A ∧ ∗(W−W+) + cos θW

(
dZ0 ∧ ∗(W−W+)

+ dW− ∧ ∗(W+A) + dW− ∧ ∗(W+Z0)

+ dW+ ∧ ∗(AW−)
) + dW+ ∧ ∗(Z0W−)

)}

+ 4g2
{
sin2 θW AW− ∧ ∗(W+A)

+ cos2 θW Z0W− ∧ ∗(W+Z0)

+ sin θW cos θW AW− ∧ ∗(W+Z0)

+ sin θW cos θW Z0W− ∧ ∗(W+A)

+ 1

4
W−W+ ∧ ∗(W−W+)

}

+ dη ∧ ∗dη − g2η2 W+ ∧ ∗W− − (g2 + g′2)η2 Z0 ∧ ∗Z0

− (
μ2η2 + λη4

)
vol . (23)
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We can read off all possible interactions between the four electroweak fields. Notice
that there is no coupling between the fields A and Z0, showing the electric neutrality
of the Z0.

The next natural step is to expand the R
+-valued scalar field η around its unique

configuration η0 minimizing the potential U (η), the so-called Vacuum Expectation
Value (VEV), as η = η0 + H where H is the gauge invariant Higgs field. True
mass terms for Z0,W± and H depending on η0 then appear from the couplings of
the electroweak fields with η and from the latter’s self interaction. The absence of
coupling between η and A indicates the masslessness of the latter (the two photons
decay channel of the Higgs boson involves intermediary leptons, not treated here).

The theory has two qualitatively distinct phases. In the phase where μ2 > 0, the
VEV vanishes and so do all masses, while in the phase where μ2 < 0, the VEV is
non-vanishing, η0 = √−μ2/2λ. The masses of the fields Z0,W± and H are then
mZ0 = η0

√
(g2 + g′2), mW± = η0g , with ratio mW±

mZ0
= cos θW , and mH = η0

√
2λ.

In this latter case, (23) becomes the electroweak Lagrangian form of the Standard
Model in the so-called unitary gauge. But keep inmind that, as a result of the dressing
field method, neither the gauge fixing nor the SSBM is involved to obtain it.

3.3 Discussion

It is worth stressing some differences with the usual viewpoint. The SSBM is usually
constructed as follows. At high energy (i.e. in the phase μ2 > 0) the symmetric
VEV ϕ0 = (0

0

)
of ϕ ∈ C

2 respect the full SU(2) × U(1) gauge symmetry group,
so that no gauge potential in the theory can be massive. At low energy (i.e. in the
phase μ2 < 0) the field ϕ must fall somewhere in the space of configurations that
minimize the potentialU (ϕ). A space which is a circle in C

2 defined by M0 = {
ϕ ∈

C
2 | ϕ̄1ϕ1 + ϕ̄2ϕ2 = −μ2/λ

}
, whose individual points are not invariant underSU(2).

Then, once an arbitrary minimum ϕ0 ∈ M0 is randomly selected, the gauge group is
broken down to U(1) and mass terms for SU (2)-gauge potentials are generated. See
e.g. [73]. This usual interpretation takes place in the history of the Universe, and this
“phase transition” is a contingent phenomenon, since it selects by chance one specific
value in M0. The Standard Model of Particles Physics (SMPP) then relies on two
strong foundations: one is structural (in the mathematical way), it is the Lagrangian
of the theory; the other one is contingent, it is the historical aspect of the SSBM.

The dressing field approach allows to clearly distinguish the erasure of SU(2)
and the generation of mass terms as two distinct operations, the former being a
prerequisite of the latter but not its direct cause, as the textbook interpretation would
have it. Notice also that the relevant SU(2)-invariant variables, corresponding to
the physical fields (fermions fields are treated in the same manner, see [46]), are
identified at the mathematical level of the theory in both phases (i.e. independently
of the sign of μ2). The transition between these phases, characterized by different
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electroweak vacua, remains a dynamical process parametrized by the sign ofμ2.6 But
we stress that in our scheme there is no arbitrariness in the choice of VEV for η ∈ R

+
since it is now unique: η0 = √−μ2/2λ when μ2 < 0. In particular, all the bosons
Z0, A,W+,W− (and fermions fields) can be identified at the level of the theory,
without requiring any historical contingent process. In that respect, the contingent
aspect of the SMPP is dispelled to the benefit of its unique structural foundation.

The arbitrariness of the polar decompositionϕ = uη is discussed in [46]: imposing
that the final U (1) charges are clearly identified, the field content of the Lagrangian
in the new variables is the same up to global transformations involving some rigid
transformations of the fields. This implies that the content of the theory in terms of
SU(2)-invariant fields takes place at an ontological level, since it does not require
any historical arguments.

According to [65], the very meaning of the terminology “spontaneous symmetry
breaking” lies in the fact that M0 is not reduced to a point. Granting this reasonable
observation, the dressing field approach would then lead to deny the soundness of
this terminology to characterize the electroweak model. First because the symmetry
reduction is not related to the choice of a VEV in M0, then because the latter is
reduced to a point. A better characterization would emphasize the link between
mass generation and electroweak vacuum phase transition: “mass generation through
electroweak vacuum phase transition”.

The fact that the dressing field approach to the electroweak model allows to
dispense with the idea of spontaneous breaking of a gauge symmetry is perfectly in
line with the so-called Elitzur theorem stating that in lattice gauge theory a gauge
symmetry cannot be spontaneously broken. An equivalent theorem for gauge field
theory has not been proven yet, but no reason has been given as to why it would fail
either.

Furthermore, as mentioned in the introduction, the status of gauge symmetries is
a disputed question in philosophy of physics. A well argued position considers gauge
symmetries as “surplus structures”, as philosopher of physics Michael Redhead calls
it, that is a redundancy in our mathematical description of reality. They would then
have an epistemological status. The idea of a spontaneous breakdown of a gauge
symmetry on the other hand, insofar as it implies observable qualitative physical
effects (particles acquire masses in a historical process), supports an ontological
view of gauge symmetries, making them a structural feature of reality rather than of
our description of it. And indeed, the part of the philosophy of physics community
interested in this problem has struggled to reconcile the empirical success of the
electroweak model with their analysis of gauge symmetries (see e.g. [8, 9]). Often a
workaround is proposed in arguing that a gauge fixing removes the local dependence
of the symmetry and that only a global one remains to be broken spontaneously. The
latter, by the Goldstone theorem, generates Goldstone bosons.

6In fact, it could even be reduced to a technical step useful to perform the usual field quantiza-
tion procedure, which relies heavily on the identification of propagators and mass terms in the
Lagrangian.
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These efforts of interpretation are enlightened once it is recognized that the notion
of spontaneous breaking of gauge symmetry is not pivotal to the empirical success
of the electroweak model. Higgs had a glimpse of this fact [32], and Kibble saw it
clearly [34] (see the paragraph just before the conclusion of his paper). Both had
insights by working on toy models, just before the electroweak model was proposed
by Weinberg and Salam in 1967. The invariant version of the model was first given
in [27] in 1981 (compare Sect. 6 with our exposition above), but was rediscovered
independently by others [13, 19, 33, 39, 46]. The dressing field approach provides
a general unifying framework for these works, and achieves the conceptual clarity
philosophers of physics have been striving for [25, 62, 64].

4 From Tetrad to Metric Formulation of General Relativity

Einstein teaches us that gravitation is the dynamics of space-time, the base manifold
itself. It deals with spatio-temporal degrees of freedom, not “inner” ones like inYang-
Mills-type gauge theories. In the most general case there exists a notion of torsion,
a concept absent in Yang-Mills theories. There are more possible invariants one can
use in a Lagrangian due to index contractions impossible in Yang-Mills theories: the
actual Lagrangian form for GR is not of Yang-Mills type.

All these issues from the existence in gravitational theories of the soldering form,
also known as (co-)tetrad field, which realizes an isomorphism between the tangent
space at each point of space-time and the Minkowski space [63]. The soldering
form can be seen as the formal implementation of Einstein’s “happiest thought”, the
Equivalence Principle, which is the key specific physical feature distinguishing the
gravitational interaction from the three others (Yang-Mills) gauge interactions.

So, while Yang-Mills fields are described by Ehresmann connections (principal
connections) on a principal bundle, the gravitational field is described by both an
Ehresmann connection, the Lorentz/spin connection, and a soldering form. In 1977,
McDowell and Mansouri treated the concatenation of the connection and of the
soldering form as a single gauge potential [47]. The mathematical foundation of
this move is Cartan geometry [70, 71]: the third additional axiom defining a Cartan
connection, and distinguishing it from a principal connection, defines an absolute
parallelism onP . This in turn induces, in simple cases, a soldering form [58]. In other
words, the geometry of the bundle P is much more tightly related to the geometry of
the base manifold. One can then convincingly argue that Cartan geometry is a very
natural framework for classical gravitational theories.

In the following we recast the tetrad formulation of GR in terms of the adequate
Cartan geometry, and show that switching to the metric formulation can be seen as
an application of the dressing field method.



The Dressing Field Method of Gauge Symmetry Reduction, a Review with Examples 397

4.1 Reduction of the Lorentz Gauge Symmetry

The relevant Cartan geometry is based on the Klein model (G, H) given by
G = SO(1, 3) � R

1,3, the Poincaré group, and H = SO(1, 3), the Lorentz group,
so that the associated homogeneous space is G/H = R

1,3, the Minkowski space.
The infinitesimal Klein pair is (g, h)with g = so(1, 3) ⊕ R

1,3 and h = so(1, 3). The
principal bundle of this Cartan geometry is P (M, SO(1, 3)). The local Cartan con-
nection and its curvature are respectively the 1-form � ∈ ∧1

(U , g) and the 2-form
� ∈ ∧2

(U , g), which can be written in matrix form

� =
(
A θ

0 0

)
, � =

(
R �

0 0

)
=

(
d A + A ∧ A dθ + A ∧ θ

0 0

)
,

where A ∈ ∧1
(U , so) is the spin connection with Riemann curvature 2-form R and

torsion � = Dθ , and θ ∈ ∧1
(U ,R1,3) is the soldering form. In other words, this

Cartan geometry is just the usual Lorentz geometry (with torsion). We can thus
consider the Cartan connection � as the gravitational gauge potential. The local
gauge group isSO := SO(1, 3) and its action by an element γ : U → SO , assuming
the matrix form γ = (

S 0
0 1

)
, is

�γ = γ−1�γ + γ−1dγ =
(
S−1AS + S−1dS S−1θ

0 0

)
,

�γ = γ−1�γ =
(
S−1RS S−1�

0 0

)
.

Given these geometrical data, the associated Lagrangian form of GR is given by,

LPal(A, θ) = −1

32πG
Tr

(
R ∧ ∗(θ ∧ θ t )

) = −1

32πG
Tr

(
R ∧ ∗(θ ∧ θTη)

)
, (24)

with η the metric of R
1,3 andG the gravitational constant. Given S = ∫

L , variation
w.r.t. θ gives Einstein’s equation in vacuum and variation w.r.t. A gives an equation
for the torsion which in the vacuum vanishes (even in the presence of matter, the
torsion does not propagate).

Looking for a dressing field liable to neutralize the SO-gauge symmetry, given
the gauge transformation of the Cartan connection, the tetrad field e = ea in the
soldering form θa = eaμdxμ is a natural candidate: θ S = S−1θ implies eS = S−1e,
so that we can define

u =
(
e 0
0 1

)
and we get uγ = γ−1u.
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Then u is a SO-dressing field, and notice that its target groupG = GL is bigger than
the structure group which happens to be also its equivariance group, H = K = SO .7

We can apply Prop. 1 and construct the SO-invariant composite fields,

�̂ = u−1�u + u−1du =
(
e−1Ae + e−1de e−1θ

0 0

)
=:

(
� dx
0 0

)
,

�̂ = u−1�u =
(
e−1Re e−1�

0 0

)
=:

(
R T
0 0

)
,

where � = �μ
ν = �μ

ν,ρdxρ is the linear connection 1-form on U ⊂ M, and R and
T are the Riemann curvature and torsion 2-forms written in the coordinate system
{xμ} on U . We can get their explicit expressions as functions of the components of
the dressed Cartan connection �̂ on account of,

�̂ = d�̂ + �̂ ∧ �̂ =
(
d� d2x
0 0

)
+

(
� ∧ � � ∧ dx

0 0

)
=

(
d� + � ∧ � � ∧ dx

0 0

)
.

We clearly see that if � is symmetric on its lower indices, the torsion vanishes.
A Cartan connection always induces a metric on the base manifold U ⊂ M

by g(X,Y ) = η
(
θ(X), θ(Y )

)
, with X,Y ∈ TxU . In component this reads gμν =

eμaηabebν , or in index free notation g = eT ηe. Notice that by definition g is SO-
gauge-invariant. It is easy to show that in this formalism, the metricity condition
is necessarily satisfied: D̂g := ∇g = dg − �T g − g� = −eT

(
ATη + ηA

)
e = 0.

Therefore if T = 0, � is the Levi-Civita connection associated to g.
Now, by application of Prop. 8 we see that the classic calculation that allows to

switch from the SO-gauge formulation to the metric formulation can be seen as an
example of the dressing field method,

LPal(A, θ) = −1

32πG
Tr

(
R ∧ ∗(θ ∧ θ t )

) = −1

32πG
Tr

(
Rg

) ∧ ∗(dx ∧ dx)

= 1

16πG

√|g|dmx Ricc =: LEH(�, g).

The last equation defines the Einstein-Hilbert Lagrangian form, depending on the
SO-invariant composite fields � and g.

4.2 Residual Symmetry

The SO-invariant fields g, �̂ = (�, dx) and �̂ = (R, T ) belong to the natural ge-
ometry of the base manifoldM, i.e. the geometry defined only in terms of its frame
bundle and its associated vector bundles. The only residual transformations these

7While in the previous example we had G = K = SU (2) ⊂ H = U (1) × SU (2).
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fields can display are coordinate transformations. On the overlap of two patches
of coordinates {xμ} and {yμ} in a trivializing open set U ⊂ M, the initial gauge
fields � and �, as differential forms, are well defined and invariant. But obviously
θ = edx = e′dy implies that the tetrad undergoes the transformation e′ = eG, with
G = Gμ

ν = ∂xμ

∂yν . The dressing fields then transform as u′ = uG, with G = (
G 0
0 1

)
,

so the composite fields have coordinate transformations,

�̂ ′ = u′−1
�u′ + u′−1du′ = G−1�̂G + G−1dG

=
(
G−1�G + G−1dG G−1dx

0 0

)
=:

(
�′ dy
0 0

)
,

�̂′ = u′−1
�u′ = G−1�̂G =

(
G−1RG G−1T

0 0

)
=:

(
R′ T ′
0 0

)
,

g′ = e′Tηe′ = GT gG.

This gives the well known transformations of the linear connection, of the metric,
of the Riemann and torsion tensors under general changes of coordinates. Of course
the Lagrangian form, LEH, is invariant.

4.3 Discussion

The tetrad as a dressing field does not belong to the gauge group SO of the theory.
So, strictly speaking, the invariant composite field �̂ is not a gauge transformation of
the Cartan connection� . In particular this means that, contrary to what is sometimes
said, � is not a gauge transformation of the Lorentz connection A. Indeed � is an
SO-invariant gl-valued 1-form on M, clearly it does not belong to the initial space
of connections of the theory. Even if one considers that the gauge symmetry of GR
are the coordinate changes, thinking of it as a gauge theory on the frame bundle LM
with gauge group GL, the tetrad eaμ still doesn’t belong to GL. So one cannot view�

and A as gauge related. To obtain A from � one needs the bundle reduction theorem,
which allows to reduce LM to the subbundle P (M, SO(1, 3)). To recover � from
A, one needs to think in terms of the dressing field method.

5 Conformal Cartan Geometry, Tractors and Twistors

In this Section we show how tractors and twistors, which are conformal calculi for
torsionless manifolds [5, 53], can be derived from the conformal Cartan geometry
via the dressing field method. We thus start by a brief description of this geometry
and then we deal with tractors and twistors.
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5.1 Conformal Cartan Geometry in a Nutshell

A conformal Cartan geometry (P,�) can be defined over n-manifolds M for any
n ≥ 3 and signature (r, s) according to the group SO(r + 1, s + 1). We will admit
that the base manifold is such that a corresponding spinorial version (P̄, �̄ ) exists,

based on the group Spin(r + 1, s + 1), so that we have the two-fold covering P̄ 2:1−→
P . Since we seek to reproduce twistors in signature (1, 3), as spinors corresponding
to tractors, we are here interested in conformal Cartan geometry over 4-manifolds,
and thus take advantage of the accidental isomorphism Spin(2, 4) � SU (2, 2).

We then treat in parallel the conformal Cartan geometry (P(M, H),�)modeled
on the Klein model (G, H) and its naturally associated vector bundle E , as well as
the spinorial version (P̄(M, H̄), �̄ ) modeled on the Klein model (Ḡ, H̄) and its
naturally associated vector bundle E. For simplicity we designate them as the real
and complex cases respectively. By dressing, the real case will yield tractors and the
complex case will yield twistors.

In the real case, we have

G = PSO(2, 4) = {
M ∈ GL6(R) | MT�M = �, det M = 1

}
/{±id}

with � =
( 0 0 −1

0 η 0
−1 0 0

)
the group metric, η the Minkowski flat metric of signature

(1, 3), and H is a parabolic subgroup comprising Lorentz, Weyl and conformal
boost symmetries: it has the following matrix presentation [11, 58], with W := R

∗+
(Weyl dilation group),

H = K0 K1 =

⎧
⎪⎨

⎪⎩

⎛

⎝
z 0 0
0 S 0
0 0 z−1

⎞

⎠

⎛

⎝
1 r 1

2rr
t

0 14 r t

0 0 1

⎞

⎠

∣∣∣∣∣∣∣

z ∈ W,

S ∈ SO(1, 3),

r ∈ R
4∗

⎫
⎪⎬

⎪⎭
,

where K0 (resp. K1) corresponds to the matrices on the left (resp. right) in the
product. Clearly K0 � CO(1, 3) via (S, z) �→ zS, and K1 is the abelian group of
conformal boosts. Here T is the usual matrix transposition, r t = (rη−1)T stands for
the η-transposition, and R

4∗ is the dual of R
4.

The corresponding Lie algebras (g, h) are graded: [gi , g j ] ⊆ gi+ j , i, j = 0,±1,
with the abelian Lie subalgebras [g−1, g−1] = 0 = [g1, g1]. They decompose respec-
tively as, g = g−1 ⊕ g0 ⊕ g1 � R

4 ⊕ co(1, 3) ⊕ R
4∗, with co(1, 3) = so(1, 3) ⊕ R,

and h = g0 ⊕ g1 � co(1, 3) ⊕ R
4∗. In matrix notation we have,

g =

⎧
⎪⎨

⎪⎩

⎛

⎝
ε ι 0
τ s ιt

0 τ t −ε

⎞

⎠

∣∣∣∣∣∣∣

(s − ε14) ∈ co(1, 3),

τ ∈ R
4,

ι ∈ R
4∗

⎫
⎪⎬

⎪⎭
⊃ h =

⎧
⎨

⎩

⎛

⎝
ε ι 0
0 s ιt

0 0 −ε

⎞

⎠

⎫
⎬

⎭
.
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The graded structure of the Lie algebras is automatically handled by the matrix
commutator.

In order to introduce the complex case, let us first consider the canonical isomor-
phism of vector spaces between Minkowski space R

1,3 and Hermitian 2 × 2 ma-
trices Herm(2,C) = {M ∈ M2(C) | M∗ = M}, where ∗ means trans-conjugation:
R

4 → Herm(2,C), x �→ x̄ = xaσa (σ0 = 12 and σi={1,2,3} are the Pauli matrices).

There is a corresponding double covering group morphism SL(2,C)
2:1−→ SO(1, 3),

S̄ �→ S (so that S−1x �→ S̄−1 x̄ S̄−1∗ and xt S �→ S̄∗ x̄ t S̄), and its associated Lie alge-
bra isomorphism so(1, 3) � sl(2,C) is denoted by s �→ s̄. In the following, the bar
notation will relate the “real” and “complex” cases in a natural way by using the
same letters, so generalizing the above maps.

For the complex case, we have then Ḡ = SU (2, 2) � Spin(2, 4), which is the
group preserving the metric �̄ = ( 0 12

12 0

)
, and H̄ is given in matrix notation by

H̄ = K̄0 K̄1 :=
{(

z1/2 S̄−1∗ 0
0 z−1/2 S̄

)(
12 −i r̄
0 12

)∣∣∣∣
z ∈ W, S̄ ∈ SL(2,C),

r̄ ∈ Herm(2,C)

}
. (25)

There is a double covering H̄
2:1−→ H which reduces to a double covering K̄0

2:1−→
K0 and a natural isomorphism K̄1 � K1. Using the bar notation, the Lie algebra
isomorphism so(2, 4) = g → su(2, 2) = ḡ is explicitly given by

ḡ = ḡ−1 + ḡ0 + ḡ1 =
{(−(s̄∗ − ε

212) −i ῑ
i τ̄ s̄ − ε

212

)∣∣∣∣
ε ∈ R, s̄ ∈ sl(2,C)

τ̄ , ῑ ∈ Herm(2,C)

}

⊃ h̄ = ḡ0 + ḡ1. (26)

Once given two Cartan bundles such that P̄(M, H̄)
2:1−→ P(M, H), we endow

P(M, H)with a conformalCartan connectionwhose local representative onU ⊂ M
is � ∈ ∧1

(U , g), with curvature � ∈ ∧2
(U , g). In matrix presentation, one has

� =
⎛

⎝
a P 0
θ A Pt

0 θ t −a

⎞

⎠ and � = d� + � 2 =
⎛

⎝
f C 0
� W Ct

0 �t − f

⎞

⎠ .

In the same way, P̄(M, H̄) is endowed with a spinorial Cartan connexion

�̄ =
(−( Ā∗ − a

212) −i P̄
i θ̄ Ā − a

212

)
and �̄ =

(−(W̄ ∗ − f
2 12) −i C̄

i�̄ W̄ − f
2 12

)
.

The soldering part of� is θ = e · dx , i.e. θa := eaμdxμ.8 Denote by g the metric
of signature (1, 3) on M induced (as already seen) from η via � according to

8Notice that from now on we shall make use of “·” to denote Greek indices contractions, while
Latin indices contraction is naturally understood from matrix multiplication.
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g(X,Y ) := η (θ(X), θ(Y )) = θ(X)Tηθ(Y ), or in a way more familiar to physicists
g := eT ηe, so that gμν = eμaηabebν . The action of H on � induces, through θ , a
conformal class of metrics c := [g] on M. But (P,�) is not equivalent to (M, c).
Nevertheless, there is a distinguished choice, the so-called normal conformal Cartan
connection �N, which is unique in satisfying the conditions � = 0 and Wa

bad = 0
(which in turn, through the Bianchi identity, implies f = 0), so that (P,�N) is
indeed equivalent to a conformal manifold (M, c).

Still, it would be hasty to identify A in� or�N with the Lorentz connection one is
familiar with in physics, and by a way of consequence to take R := d A + A2 and P
as the Riemann and Schouten tensors. Indeed, contrary to expectations, A is invariant
underWeyl rescaling and neither R nor P have thewell-knownWeyl transformations.
It turns out that one recovers the spin connection and the aforementioned associated
tensors only after a dressing operation, as shown in [1].

Using the natural representation of H on R
6, we can introduce the associated

vector bundle E = P ×H R
6. A section of E is a H -equivariant map on P whose

local expression is ϕ : U ⊂ M → R
6, given explicitly as column vectors

ϕ =
⎛

⎝
ρ

�

σ

⎞

⎠ , with � = �a ∈ R
4, and ρ, σ ∈ R.

The covariant derivative induced by the Cartan connection is Dϕ = dϕ + �ϕ, with
D2ϕ = �ϕ. The group metric � defines an invariant bilinear form on sections of
E : for any ϕ, ϕ′ ∈ �(E), one has 〈ϕ, ϕ′〉 = ϕT�ϕ′ = −σρ ′ + �Tη�′ − ρσ ′. The
covariant derivative D preserves this bilinear form since � is g-valued: D� =
d� + � T� + �� = 0.

We now follow the same line of constructions in the complex case, using the
natural representationC

4 of H̄ to define the associated vector bundleE = P̄ ×H̄ C
4.

A section of E is a H̄ -equivariant map on P̄ whose local expression is ψ : U ⊂
M → C

4 given as

ψ =
(
π

ω

)
, with π,ω ∈ C

2dual Weyl spinors.

The covariant derivative is now D̄ψ = dψ + �̄ψ , with D̄2ψ = �̄ψ . The groupmet-
ric �̄ defines an invariant bilinear form on sections of E: for any ψ,ψ ′ ∈ �(E), one
has 〈ψ,ψ ′〉 = ψ∗�̄ψ ′ = π∗ω′ + ω∗π ′. Again, the covariant derivative D̄ preserves
this bilinear form.

The gauge groups H = K0K1 and H̄ = K̄0K̄1 act on the gauge variables, with
γ ∈ H and γ̄ ∈ H̄, as

�γ = γ−1�γ + γ−1dγ, ϕγ = γ−1ϕ, �̄ γ̄ = γ̄−1�̄ γ̄ + γ̄−1dγ̄ , ψγ̄ = γ̄−1ψ.

This induces the actions �γ = γ−1�γ , �̄γ̄ = γ̄−1�̄γ̄ , (Dϕ)γ = γ−1Dϕ, and
(D̄ψ)γ̄ = γ̄−1 D̄ψ . Given γ0 ∈ K0, the soldering part of the gauge transformed
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Cartan connection�γ0 is θγ0 = zS−1θ , so that themetric induced by�γ0 is g′ = z2g.
On the other hand, θγ1 = θ for γ1 ∈ K1. So, as mentioned above, the action of the
gauge group induces a conformal class of metric c onM.

5.2 Tractors and Twistors: Constructive Procedure via
Dressing

It has been noticed that tractor and twistor vector bundles are associated to the
conformal Cartan bundle, and that tractor and twistor connections are related to the
conformal Cartan connection [5, 26]. However as it stands, the gauge transformations
above obtained show that ϕ is not a tractor and thatψ is not a twistor. It turns out that
to recover tractors and twistors one needs to erase the conformal boost symmetry
K1 � K̄1. We outline the procedure below and give the important results. Details can
be found in [1, 2].

Given the decompositions H = K0K1 and H̄ = K̄0 K̄1, the most natural choice
of dressing field to erase the conformal boost gauge symmetry is u1 : U → K1 in
the real case and its corresponding element ū1 : U → K̄1 � K1 in the complex case,
given by

u1 =
⎛

⎝
1 q 1

2qq
t

0 14 qt

0 0 1

⎞

⎠ , ū1 =
(
12 −i q̄
0 12

)
.

It turns out that u1 can be defined via the “gauge-like” constraint �(� u1) :=
Tr(Au1 − au1) = −nau1 = 0. Indeed, this gives the equationa − qθ = 0,whichonce
solved for q gives qa = aμeμa , or in index free notation q = a · e−1.9 Now, from�γ1

one finds that qγ1 = aγ1 · (eγ1)−1 = (a − re) · e−1 = q − r . One then checks easi-
ly that the constraint �(� u1) = 0 is K1-invariant and that u1 is a dressing field
for K1: from qγ1 = q − r one shows that uγ11 = γ−1

1 u1. In the same way, one has
ū γ̄11 = γ̄−1

1 ū1.
With these K1-dressing fields, we can apply (the local version of) Prop. 1 and

form the K1 � K̄1-invariant composite fields in the real and complex cases:

�1 := � u1 = u−1
1 �u1 + u−1

1 du1 =
⎛

⎝
0 P1 0
θ A1 Pt

1
0 θ t 0

⎞

⎠ , �̄1 = �̄ ū1 =
(− Ā∗

1 −i P̄1
i θ̄ Ā1

)

�1 := �u1 = u−1
1 �u1 = d�1 + � 2

1 , �̄1 = �̄ū1 = ū−1
1 �̄ū1,

9Beware of the fact that in this index free notation a is the set of components of the 1-form a. This
should be clear from the context.
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ϕ1 := u−1
1 ϕ,

D1ϕ1 = dϕ1 + �1ϕ1 =
⎛

⎝
dρ1 + P1�1

d�1 + A1�1 + θρ1 + Pt
1σ

dσ + θ t�1

⎞

⎠ =
⎛

⎝
∇ρ1 + P1�1

∇�1 + θρ1 + Pt
1σ∇σ + θ t�1

⎞

⎠ ,

ψ1 := ū−1
1 ψ,

D̄1ψ1 = dψ1 + �̄1ψ1 =
(
dπ1 − Ā∗

1π1 − i P̄1ω1

dω1 + Ā1ω1 + i θ̄π1

)
=

(∇̄π1 − i P̄1ω1

∇̄ω1 + i θ̄π1

)
,

with obvious notations. As expected, D2
1ϕ1 = �1ϕ1 and D̄2

1ψ1 = �̄1ψ1. Notice also
that f1 = P1 ∧ θ is the antisymmetric part of the tensor P1.

We claim that ϕ1 is a tractor and that the covariant derivative D1 is a “generalized”
tractor connection [5]. In the same way, we assert that ψ1 is a twistor and that the
covariant derivative D̄1 is a generalized twistor connection [53]. Both assertions are
supported by the analysis of the residual gauge symmetries.

Residual gauge symmetries. Being by construction K1 � K̄1-invariant, the com-
posite fields collectively denoted by χ1 are expected to display K0-residual and
K̄0-residual gauge symmetries. The group K0 breaks down as a direct product
of the Lorentz and Weyl groups, K0 = SO(1, 3)W , and in the same way, K̄0 =
SL(2,C)W , with respective matrix presentations

K0 =
⎧
⎨

⎩
SZ :=

⎛

⎝
1 0 0
0 S 0
0 0 1

⎞

⎠

⎛

⎝
z 0 0
0 14 0
0 0 z−1

⎞

⎠
∣∣∣∣ z ∈ W, S ∈ SO(1, 3)

⎫
⎬

⎭
(27)

K̄0 =
{
S̄Z̄ :=

(
S̄−1∗ 0
0 S̄

)(
z1/2 0
0 z−1/2

) ∣∣∣∣ z ∈ W, S̄ ∈ SL(2,C)

}
(28)

We focus on Lorentz symmetry first, then only bring our attention to Weyl sym-
metry. In the following, we will use the above matrix presentations S and S̄ for
elements of the Lorentz gauge group SO and the SL(2,C)-gauge group SL. The
residual gauge transformations of the composite fields under SO is inherited from
that of the dressing field u1. Using �γ0 to compute qS = aS · (eS)−1 = qS, one
easily finds that uS1 = S−1u1S, and correspondingly, ūS̄1 = S̄−1ū1S̄. This is a local
instance of Prop. 2, which then allows to conclude that the composite fields χ1 are
genuine gauge fields (see Sect. 2.2.1), w.r.t. Lorentz gauge symmetry. Hence, from
Cor. 3 it follows that the residual SO-gauge and SL-gauge transformations are:

�S
1 = S−1�1S + S−1dS =

⎛

⎝
0 P1S 0

S−1θ S−1A1S + S−1dS S−1Pt

0 θ t S 0

⎞

⎠ , (29)

http://dx.doi.org/10.1007/978-3-319-64813-2_2
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�̄ S̄
1 = S̄−1�̄1S̄ + S̄−1dS̄ =

(− (
S̄∗ Ā1 S̄−1∗ + d S̄∗ S̄−1∗) −i S̄∗ P̄1 S̄

i S̄−1θ̄ S̄−1∗ S̄−1 Ā1 S̄ + S̄−1d S̄

)
,

(30)

and

�S
1 = S−1�1S, ϕS

1 = S−1ϕ1, (D1ϕ1)
S = S−1D1ϕ1, (31)

�̄S̄
1 = S̄−1�̄1S̄, ψ S̄

1 = S̄−1ψ1, (D̄1ψ1)
S̄ = S̄−1 D̄1ψ1. (32)

See [1, 2] for details. Notice that ϕ1 and ψ1 transform as sections of the SO(1, 3)-
associated bundle E1 = Eu1 = P ×SO R

6 and the SL(2,C)-associated bundleE1 =
Eū1 = P̄ ×SL C

4 respectively.
We exactly repeat the same procedure to analyze theWeyl gauge symmetry, using

again the matrix notations defined in (27) and (28) for Z in the Weyl groupW ⊂ K0

and Z̄ in its complex counterpart W̄ ⊂ K̄0. We first compute the action of W on
the dressing field: using �γ0 to compute qZ = aZ · (eZ)−1, one easily finds that
uZ1 = Z−1u1C(z), where C : W → K1W ⊂ H is defined by

C(z) := k1(z)Z =
⎛

⎝
1 ϒ 1

2ϒ
2

0 14 ϒ t

0 0 1

⎞

⎠

⎛

⎝
z 0 0
0 14 0
0 0 z−1

⎞

⎠ =
⎛

⎝
z ϒ z−1

2 ϒ2

0 14 z−1ϒ t

0 0 z−1

⎞

⎠ (33)

where explicitly ϒ = ϒa = ϒμeμa , with ϒμ := z−1∂μz, and ϒ2 = ϒaη
abϒb. The

corresponding complex case is ūZ̄1 = Z̄−1ū1C̄(z), where C̄ : W → K̄1W ⊂ H̄ is de-
fined by, with ϒ̄ = ϒaσ

a ,

C̄(z) := k̄1(z)Z̄ =
(
12 −iϒ̄
0 12

)(
z1/212 0
0 z−1/212

)
=

(
z1/212 −i z−1/2ϒ̄

0 z−1/212

)
. (34)

The map C is not a group morphism, C(z)C(z′) �= C(zz′), but is a local instance
of a 1-α-cocycle satisfying Prop. 6: C(zz′) = C(z′z) = C(z′) Z′−1C(z)Z′. Under a
furtherW-gauge transformation and due to eZ = ze, one has k1(z)Z

′ = Z′−1k1(z)Z′,
which implies C(z)Z

′ = Z′−1C(z)Z′. So, if u1 undergoes a further W-gauge trans-

formation Z′, we get
(
uZ1

)Z′ = (
ZZ′)−1

uZ
′

1 C(z)Z
′ = Z−1 Z′−1u1C(z′) Z′−1C(z)Z′ =

(ZZ′)−1u1C(zz′).Mutadis mutandis, all this is true for C̄ in (34) and for ū1 as well.
We have then a well-behaved action of the gauge groups W and W̄ in the real and
complex cases.

From this we conclude that the composite fields χ1 are instances of gener-
alized gauge fields described in Sect. 2.2.2. By Prop. 5, the residual W-gauge
and W̄-gauge transformations are� Z

1 = C(z)−1�1C(z) + C(z)−1dC(z) and �̄ Z̄
1 =

C̄(z)
−1
�̄1C̄(z) + C̄(z)

−1
dC̄(z), explicitly given by
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� Z
1 =

⎛

⎝
0 z−1

(
P1 + ∇ϒ − ϒθϒ + 1

2ϒ
2θ t

)
0

zθ A1 + θϒ − ϒ tθ t ∗
0 zθ t 0

⎞

⎠ , (35)

�̄ Z̄
1 =

(− Ā∗
1 − (ϒ̄ θ̄)0 −i z−1

[
P̄1 + (

dϒ̄ − ϒ̄ Ā1 − Ā∗
1ϒ̄

) − ϒ̄ θ̄ ϒ̄
]

i zθ̄ Ā1 + (θ̄ϒ̄)0

)
, (36)

where (θ̄ ϒ̄)0 is the sl(2,C) part of θ̄ ϒ̄ = (θ̄ ϒ̄)0 + ϒθ
2 12. And (see [1, 2] for details):

�Z
1 = C(z)−1�1C(z) �̄Z̄

1 = C̄(z)
−1
�̄1C̄(z) (37)

ϕZ
1 = C(z)−1ϕ1 =

⎛

⎝
z−1

(
ρ1 − ϒ�1 + σ

2ϒ
2
)

�1 − ϒ tσ

zσ

⎞

⎠ , (D1ϕ1)
Z = C(z)−1D1ϕ1, (38)

ψ Z̄
1 = C̄(z)−1ψ1 =

(
z−1/2

(
π1 + iϒ̄ω1

)

z1/2ω1

)
, (D̄1ψ1)

Z̄ = C̄(z)−1 D̄1ψ1.

(39)

From (35), we see that A1 exhibits the knownWeyl transformation for the Lorentz
connection, and P1 transforms as the Schouten tensor (in an orthonormal basis). But,
actually, the former genuinely reduces to the latter only when one restricts to the
dressing of the normal Cartan connection �N,1, so that A1 is a function of θ and
P1 = P1(A1) is the genuine symmetric Schouten tensor. So f1 vanishes and we have,

� N,1 = d� N,1 + � 2
N,1 =

⎛

⎝
0 C1 0
0 W1 Ct

1
0 0 0

⎞

⎠ , (40)

�Z
N,1 = C(z)−1� N,1C(z) =

⎛

⎝
0 z−1 (C1 − ϒW1) 0
0 W1 ∗
0 0 ∗

⎞

⎠ , (41)

�̄ N,1 = d�̄ N,1 + �̄ 2
N,1 =

(−W̄∗
1 −iC̄1

0 W̄1

)
, (42)

�̄Z̄
N,1 = C̄(z)−1�̄ N,1C̄(z) =

(
−W̄∗

1 −i z−1
(
C̄1 − ϒ̄W̄1 − W̄∗

1ϒ̄
)

0 W̄1

)

. (43)

We see that C1 = ∇P1 is the Cotton tensor, and indeed transforms as such, while
W1 is the invariant Weyl tensor.

FromϕZ
1 in (38),we see that the dressed sectionϕ1 is a section of theC(W )-twisted

vector bundle E1= Eu1 = P ×C(W ) R
6 (see (9)). The latter is nothing but the defining

Weyl of a tractor field as derived in [5]. Then E1 is the so-called standard tractor
bundle. Since C(z) ∈ K1W ⊂ H , we have (C(z)−1)T�C(z)−1 = �. So the bilinear
form on E defined by the group metric � is also defined on E1:

〈
ϕ1, ϕ

′
1

〉 = ϕT
1 �ϕ′

1.
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This is otherwise known as the tractor metric. Furthermore, (D1ϕ1)
Z in (38) shows

that the operator D1 := d + �1 is a generalization of the tractor connection [5,
14]. The term “connection”, while not inaccurate, could hide the fact that �1 is no
more a geometric connection w.r.t. Weyl symmetry. So we shall prefer to call D1

a generalized tractor covariant derivative. The standard tractor covariant derivative
is recovered by restriction to the dressing of the normal Cartan connection, D N,1 =
d + � N,1, and � N,1 in (40) is known as the tractor curvature.

In the same way, ψ Z̄
1 in (39) shows that the dressed section ψ1 is a section of the

C̄(W )-twisted vector bundle E1= Eū1 = P̄ ×C̄(W ) C
4. The latter is also, modulo the

z factors, the definingWeyl transformation of a local twistor as given by Penrose [53].
So E1 is identified with the local twistor bundle. It is endowed with a bilinear form
defined by the group metric �̄ of SU (2, 2):

〈
ψ1, ψ

′
1

〉 = ψT
1 �̄ψ ′

1. It is well-defined
since, in view of C̄(z) ∈ K̄1W ⊂ H̄ , we have (C(z)−1)∗�̄C(z)−1 = �̄. In the twistor
literature, the quantity 1

2 〈ψ1, ψ1〉 is known as the helicity of the twistor field ψ1 [51,

52]. Also, (D̄1ψ1)
Z̄ in (39) shows that the operator D̄1 := d + �̄1 is a generalization

of the twistor connection. For the reason stated above, we shall prefer to call D̄1

a generalized twistor covariant derivative. The usual twistor covariant derivative is
recovered by restriction to the normal case, D̄ N,1 = d + �̄ N,1, and �̄ N,1 in (42) is
known as the twistor curvature.

Remark that the actions of the Lorentz/SL(2,C) and Weyl gauge groups on the
composite fields χ1 commute. In the real case for instance, we have SW = S so that
(
χSO
1

)W = (
χS
1

)W = (
χW
1

)SW = (
χ
C(z)
1

)S = χ
C(z)S
1 . But we also have C(z)SO =

S−1C(z)S, so we get
(
χW
1

)SO = (
χ
C(z)
1

)SO = (
χSO
1

)C(z)SO = (
χS
1

)S−1C(z)S =
χ
C(z)S
1 . Our notations for the tractor and twistor bundles can then be refined to reflect

this point: E1 = P ×C(W )·SO R
6 and E1 = P ×C̄(W )·SL C

4.
Following the ending considerations of Sect. 2.2.1, the fact that the composite

fields�1, ϕ1 are genuine Lorentz-gauge fields satisfying (29) and (31) suggests that
a further dressing operation aiming at erasing Lorentz symmetry is possible. In [1] we
showed that in the case of tractors, the vielbein e = eaμ could be used to this purpose
since it has the transformation eS = S−1e, characteristic of a SO-dressing field. This
is the same process as in the example of GR, treated in Sect. 4. The difference is that
in GR one erases Lorentz symmetry and ends-up with “nothing”, that is no gauge
symmetry but only coordinate transformations characteristic of geometric objects
living on M, while in the tractor case one ends-up with Weyl rescalings as residual
gauge symmetry in addition to coordinate transformations. Computing the residual
Weyl symmetry after this second dressing displays a slightly different C-map to be
used to perform the transformation of the composite fields, see [1]. As a matter of
fact, in the literature two kinds of transformation law for tractors can be found, which
in our framework corresponds to either erasing only the K1-symmetry [56, 57], or
to erasing both K1 and Lorentz-symmetries [5, 14].

Since there is no finite dimensional spin representation of GL , in the twistor
case the vielbein cannot be used as a second dressing field. By the way, looking at
the SL(2,C) gauge transformation of the vielbein, one sees that it is unsuited as a
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SL-dressing field. So, as far as twistors are concerned, the process of symmetry
reduction ends here.

BRST treatment The gauge group of the initial Cartan geometries are H and H̄.
The associated ghost v ∈ LieH and v̄ ∈ LieH̄ split along the grading of h and h̄,

v = v0 + vι = vε + vs + vι =
⎛

⎝
ε ι 0
0 s ιt

0 0 −ε

⎞

⎠ ,

v̄ = v̄0 + v̄ι = v̄ε + v̄s + v̄ι =
(−(s̄∗ − ε/2) −i ῑ

0 s̄ − ε/2

)
.

The BRST operator splits accordingly as s = s0 + s1 = sW + sL + s1. The algebra
satisfied by the gauge fields χ = {�,�, ϕ, �̄ , �̄, ψ}, noted BRST, is

s� = −Dv = −dv − [�, v], s� = [�, v], sv = −v2,

s�̄ = −Dv̄ = −d v̄ − [�̄ , v̄], s�̄ = [�̄, v̄], sv̄ = −v̄2,

sϕ = −vϕ, sψ = −v̄ψ,

From Sect. 2.3, the composite fields χ1 = {�1,�1, ϕ1, ψ1} satisfy a modified
BRST algebra, formally similar but with composite ghost v1 := u−1

1 vu1 + u−1
1 su1.

From the finite gauge transformations of u1, and the linearizations γ1 � 1 + vι and
S � 1 + vs, the BRST actions of K1 and SO are found to be: s1u1 = −vιu1 and
sLu1 = [u1, vs]. This shows that the Lorentz sector is an instance of the general result
(15). Using the linearizations Z � 1 + vε and k1(z) � 1 + κ1(ε), so that C(z) =
k1(z)Z � 1 + c(ε) = 1 + κ1(ε) + vε, the BRST action of W is sWu1 = −vεu1 +
u1c(ε). This shows that the Weyl sector is an instance of the general result (17).
After a straightforward computation and a similar analysis for the complex case, we
get the composite ghosts

v1 = c(ε) + vs =
⎛

⎝
ε ∂ε 0
0 s ∂εt

0 0 −ε

⎞

⎠ , v̄1 = c̄(ε) + v̄s =
(− (

s̄∗ − ε
212

) −i ∂̄ε
0 s̄ − ε

212

)
,

where ∂ε := ∂aε = ∂με eμa . The ghost of conformal boosts, ι, has disappeared from
these new ghosts, replaced by the first derivative of the Weyl ghost. This means
that s1χ1 = 0, which reflects the K1-gauge invariance of the composite fields χ1.
The composite ghost v1 only depends on vs and ε: it encodes the residual K0-gauge
symmetry. The algebra satisfied by the composite fields χ1, denoted by BRSTW,L,
is then simply
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s�1 = −D1v1 = −dv1 − [�1, v1], s�1 = [�1, v1], sv1 = −v21,

s�̄1 = −D1v̄1 = −d v̄1 − [�̄1, v̄1], s�̄1 = [�̄1, v̄1], sv̄1 = −v̄21,

sϕ1 = −v1ϕ1, sψ1 = −v̄ψ1,

and reproduces the infinitesimal version of (29)–(32) (Lorentz/SL(2,C) sector) and
(35)–(39) (Weyl sector). Explicit results are obtained via simple matrix calculations,
we refer to [1, 2] for all the details.

Since v1 = c(ε) + vs,BRSTW,L splits naturally as Lorentz andWeyl subalgebras,
s = sW + sL. The Lorentz sector (sL, vs) shows the composite fields χ1 to be genuine
Lorentz gauge fields. While the Weyl sector (sW, c(ε)) shows χ1 to be generalized
Weyl gauge fields.

5.3 Discussion

Today, tractors and twistors are terms whose meaning extends beyond their origi-
nal context of definition, conformal (and projective) geometry, and are quite broad
concepts in the theory of parabolic geometries [11]. In their original meaning, most
often tractor and local twistor bundles are constructed in a “bottom-up” way, starting
with a conformal manifold (M, c) and building a gauge structure on top of it.

First, one poses a defining differential equation on (M, c). In the case of tractors,
this is the almost Einstein equation (AE)

∇μ∇νσ − Pμνσ − gμν
n (�σ − Pσ) = 0,

with σ a 1-conformal density (̂σ = z−1σ ), ∇ the Levi-Civita connection associated
to a choice of metric gμν ∈ c, � := gμν∇μ∇ν , and P := gμνPμν . For twistors, one
defines the twistor equation

∇(A
A′ωB) = 0, or equivalently ∇AA′ωB − 1

2δ
B
A ∇CA′ωC = 0,

where ωB : M → C
2 is a Weyl spinor. Then one prolongs these equations, recast

them as first order systems. These are interpreted as first order differential operators
acting on multiplets: ∇T V = 0 and ∇TZ = 0 respectively, where V = (σ, �μ, ρ)

and Z = (ωA, πA′). The transformations of the components of V and Z under Weyl
rescaling of the metric is given either by definition, when the components are func-
tions of the metric (V ), or by choice (Z ). This takes some algebra to prove. With still
more algebra, one shows that these transformation laws also apply to∇T V and∇TZ .
But then V and Z are interpreted as parallel sections of some vectors bundles over
M, the standard tractor bundle T and local twistor bundle T respectively, which
are endowed with their linear connections, the tractor connection ∇T and twistor
connection ∇T (hence the notation). Their commutators [∇T ,∇T ]V = κV and
[∇T,∇T]Z = KZ are said to define respectively the tractor and twistor curvatures.
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Thus, starting from differential equations on (M, c), one ends-up with a gauge
structure on top of it in the form of the tractor and twistor bundles and their con-
nections. The latter provide natural conformally covariant calculi for torsion-free
conformal manifolds. We refer the reader to [5, 14] for detailed calculations of this
bottom-up procedure in the tractor case, and to the classic [53, Sect. 6.9] for the
twistor case. See also [18, Sect. 6.1], which extends the twistor construction to para-
conformal manifolds. It has been noticed that the tractor and twistor bundles can
be seen as associated bundles to the principal Cartan bundle P(M, H), and a link
between the normal conformal Cartan connection and the twistor 1-form was drawn
by Friedrich [26]. Nevertheless, the construction via prolongation has been deemed
more explicit in [18], and more intuitive and direct in [5], than the viewpoint in terms
of associated vector bundles.

However, our procedure present several advantages. Starting from a “bigger”
gauge structure over M controlled by the conformal Cartan bundle P and a double
cover complex version P̄ , we obtain the vectors bundles endowed with covariant
derivatives (E1, D1) and (E1, D̄1) in a very straightforward and systematic way by
symmetry reduction. So, our constructive procedure via the dressing method is “top-
down” and involves much less calculations than the usual “bottom-up” approach
outlined above, and is arguably more direct and intuitive.

Furthermore, these bundles reduce to the usual tractor and twistor bundles and their
respective covariant derivatives when restricted to the normal Cartan geometry, and
one gets (E1, DN,1) = (T ,∇T ) and (E1, D̄N,1) = (T,∇T). So, here we effortlessly
generalize the tractor and twistor derivatives, providing essentially tractor and twistor
calculi for conformal manifolds with torsion. It follows that if�N,1 and �̄N,1 are the
genuine tractor and twistor 1-forms, then�1 and �̄1 may be labeled as generalized
tractor and twistor 1-forms.

Our approach allows to clearly highlight the fact that, while tractors, twistors, and
the associated (generalized) 1-forms and curvatures are genuine Lorentz/SL(2,C)

gauge fields, they are gauge fields of generalized kind w.r.t. Weyl rescaling gauge
symmetry, transforming using a 1-α-cocycle on the Weyl group. A fact that, as far
as we know, has never been noticed.

Let us finally notice that in this framework, one can easily write a Yang-Mills-type
Weyl-invariant Lagrangian and compute the corresponding field equations. It turns
out that this Lagrangian reproduces Weyl gravity if one restricts to a normal Cartan
connection, as was shown in [4]. This by the way explains the equivalence between
the Bach equation and the Yang-Mills equation for the normal conformal Cartan
connection [35] or the twistor 1-form [48].

6 Conclusion

The dressing field method of gauge symmetry reduction is a fourth way, beside
gauge fixing, SSBM, and the bundle reduction theorem, to handle challenges one
faces in gauge theories. As a matter of fact, as mentioned at the end of Sect. 2.4,
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it is relevant in many places in gauge fields theories, from QCD to anomalies in
QFT. In this review paper we have outlined the main general results of the method
concerning the construction of partially gauge invariant composite fields out of the
usual gauge variables, and discussed two important cases where their residual gauge
transformations can be treated on a general ground. Interestingly, we saw a case in
which the composite fields are gauge fields of an unusual geometric nature, so that
we label them “generalized” gauge fields.

We have shown that the method applies to the BEHGHK mechanism pivotal
to the electroweak model. In doing so, we highlighted the fact that the notion of
spontaneously broken gauge symmetry, which have long raised doubts among both
philosophers of science and lattice gauge theorists (in view of the Elitzur theorem),
is dispensable and anyway unnecessary for the empirical success of the Standard
Model. This result is thus satisfying from a philosophical standpoint, and does not
question the heuristic power of the gauge principle.

We have argued that the usual switching between the tetrad and metric formula-
tions of GR is a simple application of the dressing field method. In doing so, we have
stressed that, contrary to what is sometimes said, the linear connection � and the
Lorentz connection A are not mutual gauge transformations, even if one considers
GR as a gauge theory on the frame bundle LM. Actually, to recover A from � one
needs the bundle reduction theorem, and to get � from A one needs the dressing field
method. So that, in this instance, these are reciprocal operations.

The method applied to the conformal Cartan geometry and its spinorial version
allows to obtain generalizations of the tractor and twistor calculi for conformal man-
ifolds, extending them to manifolds with torsion, in a very straightforward “top-
down” way. It happens to be computationally much more economical than the usual
“bottom-up” approach by prolongation of the Almost Einstein and twistor equations,
and arguably more direct and intuitive. Also, we have seen that tractors and twistors,
while being genuine Lorentz gauge fields, are generalized gauge fields as far asWeyl
rescaling symmetry is concerned.

One suspects that still more instances of the dressing field method could be found
in the literature on gauge theories. Furthermore, its simplicity may put within reach
results otherwise difficult to obtain by other approaches; the example of tractor calculi
for various parabolic geometries and their application to physics comes to mind. It
is our hope that this approach could contribute to clarify and enrich some aspects of
gauge field theories in physics.

In its present form, the method relies on the defining (structural) relations for
gauge transformations: as already mentioned, while the field contents are different,
definitions (4) look algebraically like gauge transformations (1).10 This is a key
ingredient of the method. One can raise the question about some possible other
routes one could elaborate to define dressed fields on which a part of the gauge
symmetry is erased, but not using gauge transformation-like relations.

10Let us mention here how it is has been difficult, in several occasions, to convince some colleagues
that these relations are not mathematically on the same footing.
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Finally, to make the dressing field method a full-fledged approach to gauge QFT,
the question of its compatibility with quantization must be addressed. In particular,
do the operations of quantization and of reduction by dressing commute? So far,
the question has not been fully addressed. One can find in [46] some hints that
the problem is not easy and straightforward, mainly because we may first face the
problem of the definition of a mathematically sound, let alone unique, quantization
scheme. A rich topic in itself, that again exemplifies the fruitful cross-fertilization
between physics and mathematics.
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35. M. Korzyński, J. Lewandowski, The normal conformal Cartan connection and the Bach tensor.

Class. Quantum Grav. 20(16), 3745 (2003)
36. F. Langouche, T. Schücker, R. Stora, Gravitational anomalies of the Adler-Bardeen type. Phys.

Lett. B 145, 342–346 (1984)
37. L.D.Lantsman,Dirac fundamental quantization of gauge theories is the naturalwayof reference

frames in modern physics. Fizika B 18, 99–140 (2009)
38. M.Lavelle,D.McMullan.Nonlocal symmetry forQED.Phys.Rev.Lett.71, 3758–3761 (1993).

https://doi.org/10.1103/PhysRevLett.71.3758
39. M. Lavelle, D. McMullan. Observables and gauge fixing in spontaneously broken gauge the-

ories. Phys. Lett. B 347(1), 89–94 (1995). ISSN 0370-2693. https://doi.org/10.1016/0370-
2693(95)00046-N

40. M. Lavelle, D. McMullan, Constituent quarks from QCD. Phys. Rep. 279, 1–65 (1997)
41. S. Lazzarini, C. Tidei. Polyakov soldering and second-order frames: the role of the Cartan

connection. Lett. Math. Phys. 85(1), 27–37 (2008). ISSN 1573-0530. https://doi.org/10.1007/
s11005-008-0253-8

42. E. Leader, C. Lorcé, The angularmomentum controversy: what is it all about and does it matter?
Phys. Rep. 514, 163–248 (2014)

43. C. Lorcé, Geometrical approach to the proton spin decomposition. Phys. Rev. D 87, 034031
(2013)

https://doi.org/10.1007/978-90-481-2287-5_1
https://doi.org/10.1103/PhysRevD.91.045014
https://doi.org/10.1007/JHEP09(2015)195
https://doi.org/10.1063/1.4943595
https://doi.org/10.1063/1.4943595
https://doi.org/10.1007/s13194-012-0061-y
https://doi.org/10.1007/s13194-012-0061-y
https://doi.org/10.1007/BF00771141
https://doi.org/10.1016/0550-3213(81)90448-X
https://doi.org/10.1016/0550-3213(81)90448-X
https://doi.org/10.1103/PhysRev.145.1156
https://doi.org/10.1103/PhysRev.155.1554
https://doi.org/10.1103/PhysRevLett.71.3758
https://doi.org/10.1016/0370-2693(95)00046-N
https://doi.org/10.1016/0370-2693(95)00046-N
https://doi.org/10.1007/s11005-008-0253-8
https://doi.org/10.1007/s11005-008-0253-8


414 J. Attard et al.

44. J. Mañes, R. Stora, B. Zumino, Algebraic study of chiral anomalies. Comm. Math. Phys. 102,
157–174 (1985)

45. C.A. Martin, Gauge principles, gauge arguments and the logic of nature. Proc. Philos. Sci.
Assoc. 3, 221–234 (2002)

46. T. Masson, J.-C. Wallet. A remark on the spontaneous symmetry breaking mechanism in the
standard model, 2011. arXiv:1001.1176

47. S.W.McDowell, F. Mansouri, Unified geometric theory of gravity and supergravity. Phys. Rev.
Lett. 38, 739–742 (1977)

48. S.A. Merkulov, The twistor connection and gauge invariance principle. Comm. Math. Phys.
93(3), 325–331 (1984)

49. L.O’Raifeartaigh,TheDawning ofGauge Theory (PrincetonUniversity Press, Princeton Series
in Physics, Princeton, 1997)

50. G.K. Pedersen, C-star Algebras and Their Automorphisms Groups (London Mathematical
Society Monographs, Academic Press Inc., Cambridge, 1979)

51. R. Penrose, The central programme of twistor theory. Chaos Solitons Fractals 10, 581–611
(1999)

52. R. Penrose, M. MacCallum. Twistor theory: an approach to the quantisation of fields and
space-time. Phys. Rep. 6(4), 241–316 (1973). ISSN 0370-1573. https://doi.org/10.1016/0370-
1573(73)90008-2

53. R. Penrose, W. Rindler, Spinors and Space-Time, vol. 2 (Cambridge University Press, Cam-
bridge, 1986)

54. V. Pervushin. Dirac variables in gauge theories. Lecture notes in DAAD Summerschool on
Dense Matter in Particle - and Astrophysics, JINR, Dubna, Russia, August 20–31, 2001. arX-
iv:hep-th/0109218v2

55. A.M. Polyakov. Gauge transformations and diffeomorphisms. Int. J. Mod. Phys. A5, 833
(1990). https://doi.org/10.1142/S0217751X90000386

56. A.R.Gover, A. Shaukat, A.Waldron. Tractors,mass andWeyl invariance. Nucl. Phys. B 812(3),
424–455 (2009)

57. A.R. Gover, A. Shaukat, A. Waldron. Weyl invariance and the origins of mass. Phys. Lett. B,
675(1), 93–97 (2009)

58. R.W. Sharpe. Differential geometry: Cartan’s generalization of Klein’s Erlangen Program, in
Graduate Text in Mathematics, vol. 166 (Springer, Berlin, 1996)

59. I.M. Singer, Some remark on the Gribov ambiguity. Comm. Math. Phys. 60, 7–12 (1978)
60. S. Sternberg, Group Theory and Physics (Cambridge University Press, Cambridge, 1994)
61. R. Stora. The Wess Zumino consistency condition: a paradigm in renormalized perturbation

theory. Fortsch. Phys. 54, 175–182 (2006). https://doi.org/10.1002/prop.200510266
62. W. Struyve. Gauge invariant accounts of the Higgs mechanism. Stud. Hist. Philos. Sci. B: Stud.

Hist. Philos. Modern Phys. 42(4), 226–236 (2011). ISSN 1355-2198. https://doi.org/10.1016/
j.shpsb.2011.06.003

63. A. Trautman, Fiber Bundles, Gauge Field and Gravitation, in General Relativity and Gravita-
tion, vol. 1 (Plenum Press, New-York, 1979)

64. S. van Dam. Spontaneous symmetry breaking in the Higgs mechanism. PhiSci-Archive, 2011
65. C.V.Westenholz, On spontaneous symmetry breakdown and the Higgs mechanism. Acta Phys.

Acad. Sci. Hung. 48, 213–224 (1980)
66. H. Weyl. Gravitation and electricity. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.)

1918, 465 (1918)
67. H. Weyl. A new extension of relativity theory. Annalen Phys. 59, 101–133 (1919); Annalen

Phys. 364, 101 (1919)
68. H. Weyl, Symmetry (Princeton University Press, Princeton, 1952)
69. D.P.Williams.CrossedProducts ofC-starAlgebras, inMathematical Surveys andMonographs,

vol. 134 (American Mathematical Society, 2007)
70. D.K. Wise, Symmetric space, Cartan connections and gravity in three and four dimensions.

SIGMA 5, 080–098 (2009)

http://arxiv.org/abs/1001.1176
https://doi.org/10.1016/0370-1573(73)90008-2
https://doi.org/10.1016/0370-1573(73)90008-2
http://arxiv.org/abs/hep-th/0109218v2
https://doi.org/10.1142/S0217751X90000386
https://doi.org/10.1002/prop.200510266
https://doi.org/10.1016/j.shpsb.2011.06.003
https://doi.org/10.1016/j.shpsb.2011.06.003


The Dressing Field Method of Gauge Symmetry Reduction, a Review with Examples 415

71. D.K. Wise, MacDowell-Mansouri gravity and Cartan geometry. Class. Quantum Grav. 27,
155010 (2010)

72. C. Yang, Selected Papers (1945–1980), with Commentary (World Scientific Publishing Com-
pany, Singapore, 2005)

73. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th edn. (Oxford Science
Publications, Oxford, 2011)



Syntactic Phylogenetic Trees

Kevin Shu, Sharjeel Aziz, Vy-Luan Huynh, David Warrick
and Matilde Marcolli

Abstract In light of recent controversies surrounding the use of computational
methods for the reconstruction of phylogenetic trees of language families (especially
the Indo-European family), a possible approach based on syntactic information, com-
plementing other linguistic methods, appeared as a promising possibility, largely
developed in recent years in Longobardi’s Parametric Comparison Method. In this
paper we identify several serious problems that arise in the use of syntactic data from
the SSWL database for the purpose of computational phylogenetic reconstruction.
We show that the most naive approach fails to produce reliable linguistic phyloge-
netic trees. We identify some of the sources of the observed problems and we discuss
how they may be, at least partly, corrected by using additional information, such
as prior subdivision into language families and subfamilies, and a better use of the
information about ancient languages. We also describe how the use of phylogenetic
algebraic geometry can help in estimating to what extent the probability distribution
at the leaves of the phylogenetic tree obtained from the SSWL data can be considered
reliable, by testing it on phylogenetic trees established by other forms of linguistic
analysis. In simple examples, we find that, after restricting to smaller language sub-
families and considering only those SSWL parameters that are fully mapped for the
whole subfamily, the SSWL data match extremely well reliable phylogenetic trees,
according to the evaluation of phylogenetic invariants. This is a promising sign for
the use of SSWL data for linguistic phylogenetics. We also argue how dependencies
and nontrivial geometry/topology in the space of syntactic parameters would have to
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be taken into consideration in phylogenetic reconstructions based on syntactic data.
A more detailed analysis of syntactic phylogenetic trees and their algebro-geometric
invariants will appear elsewhere [33].

1 Introduction

This paper is based on a talk given by the last author at the workshop “Phylogenetic
Models: Linguistics, Computation, and Biology” organized by Robert Berwick at
the CSAIL department of MIT in May 2016.

The reconstruction of phylogenetic trees of language families is a crucial problem
in the field of Historical Linguistics. The construction of an accurate family tree for
the Indo-European languages accompanied andoriginallymotivated the development
of Historical Linguistics, and has been a focus of attention for linguists for the span
of two centuries. In recent years, Historical Linguistics has seen a new influx of
mathematical and computational methods, originally developed in the context of
mathematical biology to deal with species phylogenetic trees, see for instance [5, 10,
12, 23, 28, 36]. A considerable amount of controversy arose recently in relation to the
accuracy and effectiveness of these methods and the related problem of phylogenetic
inference. In particular, claims regarding the phylogenetic tree of the Indo-European
languagesmade in [6]were variously criticized by historical linguists, see the detailed
discussion in [27].

Most of the literature dealing with computational phylogenetic trees in the context
of Linguistics focused on the use of lexical data, in the form of Swadesh lists of
words, and the encoding as binary data of the counting of cognate words, see for
instance the articles in [12]. Other reconstructions used phonetic data and sound
change, as in [5], or a combination of several types of linguistic data (referred to
as “characters”), including phonetic, lexical, and morphological properties, as in
[3, 36]. A different approach to linguistic phylogenetic reconstruction, based on
syntactic parameters, was developed recently in [13, 17–21]. This method is known
as Parametric Comparison Method (PCM). A coding theory perspective on the PCM
was given in [22, 32].

The notion of syntactic parameters arises in Generative Linguistics, within the
Principles and Parametersmodel developed byChomsky in [7, 8]. Amore expository
account of syntactic parameters is given in [2]. Syntactic parameters are conceived
as binary variables that express syntactic features of natural languages. The notion
of syntactic parameters has undergone changes, reflecting changes in the modeling
of generative grammar: for a recent overview of the parametric modeling of mor-
phosyntactic features see [30]. A main open problems in the parametric approach for
comparative generative grammar is understanding the space of syntactic parameters,
identifying dependence relations between parameters and possibly identifying a fun-
damental set of such variables that would represent a good system of coordinates for
the space of languages. Recently, the use of mathematical methods for the study of
the space of syntactic parameters of world languages was proposed in [26, 29, 34].
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At present, the only available extensive database of binary parameters describing
syntactic features is the SSWL database [37], which collects data of 115 parameters
over 253 world languages. It is debatable whether the binary variables collected in
SSWL represent fundamental syntactic parameters: surface orders, for instance, are
often confounded with the deep underlying parameter values. Moreover, SSWL does
not record any dependence relations between parameters. Different data of syntactic
parameters have been used in [20, 21], with dependence relations taken into account,
and more data are being collected by these authors and will hopefully be available
soon. For the purpose of this paper, we will use the terminology “syntactic param-
eters” loosely for any collection of binary variables describing syntactic features of
natural languages. We work with the SSWL data, simply because it is presently the
most extensive database available of syntactic structures.

In Sect. 2 of this paper we show that just using the Hamming distance between
vectors of binary variables extracted from the SSWL data and the Neighborhood-
JoiningMethod for phylogenetic inference gives very poor results as far as linguistic
phylogenetic trees are concerned. We identify several different sources of problems,
some inherent to the SSWL data, some to the inference methodology, and somemore
generally related to the use of syntactic parameters for phylogenetic linguistics.

In the Sect. 4 we review the method of Phylogenetic Algebraic Geometry of [24]
and themain results of [1, 35] on phylogenetic ideals and phylogenetic invariants that
we need for applications to the analysis of syntactic phylogenetic trees. In Sect. 5 we
show how one can use techniques from Phylogenetic Algebraic Geometry to test the
reliability of syntactic parameter data for phylogenetic linguistics, by using known
phylogenetic trees that are considered reliable, and to test the reliability of candidate
phylogenetic trees assuming a certain degree of reliability of the syntactic data.

In Sect. 6 we argue that dependencies between the syntactic variables recorded
in the SSWL database should be taken into consideration in order to improve the
reliability of these data for phylogenetic reconstruction. In particular, the presence of
geometry/topology in this set of data and the presence of different degrees of recov-
erability of some of the SSWL syntactic variables in Kanerva network tests indicate
that an appropriated weighted use of the data that accounts for these phenomena may
improve the results.

2 PHYLIP Analysis of SSWL

We discuss here the problems that occurs in a naive analysis of the SSWL database
using the phylogenetic tree algorithm PHYLIP. We identify the main types of errors
that occur and the possible sources of the problems. We will discuss in Sect. 4 how
one can eliminate some of the problems and obtain more accurate phylogenetic trees
from SSWL data, using different methods.
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2.1 Data and Code

We acquired the syntactic language data from the SSWL database with two different
methods, one consisting of downloading the data as a .csv file directly, with the
results separated in the format “language|property|value”, and one achieved by
scraping the data into a .json file, formatted as a list of lists of binary variables, in
the format “‘language’ : {‘parameters’ : ‘values’}”. This was done with a python
script data_obtainer.pywhich went through all of SSWL and dumped the data
as desired.

The SSWL data, stored in a more convenient .json file format produced by the
first author, are available as the file full_langs.json which can be downloaded
at the URL address http://www.its.caltech.edu/~matilde/PhylogeneticSSWL2.

We created, for each language in the database, a vector of binary variables rep-
resenting the syntactic traits of that language as recorded in the SSWL database,
with value 1 indicated that the language possessed the respective trait, and value 0
indicating that the language does not possess the trait.

One of themain sources of problems regarding the use of SSWLdata arises already
at this stage: not all languages in the database have all the same parameters mapped.
The lack of information about a certain number of parameters for certain languages
alters the counting of the Hamming distances, as it requires a choice of normalization
of the string length, with additional entries added representing lack of information.
This clearly generates problems, as this inconsistency generates mistakes in the
counting of Hamming distances and in the tree reconstruction. In Sect. 2.2 we will
illustrate specific examples where this problem occurs.

TheHammingdistance algorithmHF.py takes twoequal-length binary sequences,
throwing an error if this length requirement is violated, and returns the sum of all
bitwise XORs between them, or the total number of differences. In this way, we
construct with distance_matrix_checker.py the Hamming distance matrix
Mab = dH (�a, �b), whose entries are the Hamming distances between the vectors of
binary syntactic parameters of languages �a and �b.

For example, Germanic languages on average have normalized Hamming dis-
tance in the range 0.3–0.4. Old Saxon and Old English have a Hamming distance
of 0.17 from German, while Swiss German has distance 0.09. Modern English has
below average differences at 0.27. While these distances may appear reasonable,
one can detect easily another major source of problems in the use of SSWL data for
phylogenetic reconstruction. Many languages belonging to very different families
have small Hamming distance: for example, the Indo-European Hindi (60%mapped
in SSWL) and the Sino-Tibetan Mandarin (87% mapped in SSWL) receive a nor-
malized distance of 0.12. This is certainly in large part due to the different level of
accuracy with which the two languages are mapped in the same database. However,
one can also observe syntactic similarities between languages belonging to different
families, which are not due to poor recording of the respective data, but are a genuine
consequence of the syntactic properties being described.

http://www.its.caltech.edu/~matilde/PhylogeneticSSWL2
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This 253 × 253 matrix of Hamming distances was then given as input to the
PHYLIP package1 for phylogenetic tree reconstruction, which is widely used in
Mathematical Biology. Given the Hamming distance matrix Mab = dH (�a, �b), the
PHYLIP software provides several options for tree construction from distancematrix
data: additive tree model, ultrametric model, neighbor joining method, and average
linkage clustering (UPGMA). The resulting tree produced by PHYLIP, containing
all 253 languages in the SSWL database, is contained in outfile, where the tree
in the text file is drawn with dashes and exclamation points. The information of the
output tree and distances is also given in the output file outtree in Newick format,
with parentheses and commas. The accompanying file key.txt contains the key
that indicates the full language name that corresponds to each two-letter string in
outfile. The output files can be opened in any text editor.

The python code and the output files, prepared by the second, third and fourth
authors of this paper, are available at http://www.its.caltech.edu/~matilde/Phylogenetic
SSWL.

2.2 Main Problems in the Resulting Tree

A quick inspection of the output file obtained by running PHYLIP on the SSWL data
immediately reveals that there are many problems with the resulting phylogenetic
tree. We will give explicit examples here that illustrate some of the main type of
problems one encounters. There are many more such examples one can easily find
by inspecting the output tree available in the repository at the URL indicated above.

2.3 Sources of Problems

An important problem in computational phylogenetic reconstruction is how to val-
idate statistically the model. There are well known problem inherent in using the
Hamming distance as a source for phylogenetic trees. Estimating tree branch lengths
is a hard problem. Distance matrices can be non-additive due to error, and it is typi-
cally difficult to distinguish distances that deviate from additivity due to change from
deviations due to error. This problem is significant even in the context of Biology,
where the use of DNA data is more reliable than the use of vectors of binary variables
coming from linguistic properties [31]. For a discussion of some of these issues in
Biology see [9]. For a comparison of phylogenetic methods (not including syntactic
parameters) in Linguistics, see [3].

As we discuss with individual specific examples in the subsections that follow,
there are several different source of problems that combine to create different kinds
of errors in the resulting phylogenetic tree. The main problems are the following:

1http://evolution.genetics.washington.edu/phylip/software.html.

http://www.its.caltech.edu/~matilde/PhylogeneticSSWL
http://www.its.caltech.edu/~matilde/PhylogeneticSSWL
http://evolution.genetics.washington.edu/phylip/software.html
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(1) inherent problems in the computational method based on Hamming distances,
as discussed above;

(2) problemswith non-uniform coverage of syntactic data across different languages
and language families in the SSWL database;

(3) the nature of the syntactic variables recorded in the SSWL database (for instance
with respect to surface versus deep structure) and the presence of relations
between these variables;

(4) the existence of languages belonging to unrelated linguistic families that can be
similar at the level of syntactic structures.

Clearly, some of these problems are of linguistic nature, like the last one listed,
while others are of computational nature, like the first one, while others depend on
the nature and accuracy of the SSWL data. It is difficult to disentangle the effects of
each individual problem on the output tree, but the examples listed below illustrate
cases where one can identify one of the problems listed here as the most likely origin
of the mistakes one sees in the resulting phylogenetic tree.

2.3.1 Misplacement of Languages Within the Correct Subfamily Tree

This type of problem occurs when a group of languages are correctly identified as
belonging to the same subfamily of a given historical-linguistic family, but the inter-
nal structure of the subfamily tree appears inconsistent with the structure generally
agreed upon based on other linguistic data.

In the naive PHYLIP analysis of the SSWL database we see an example of this
kind by considering the subtree of the Latin languages within the Indo-European
family. The shape of this subtree, as it appears in in the output file, is of the form
illustrated in Fig. 1. We see here that, although these languages are correctly grouped
together as belonging to the same subfamily, the relative position within the subtree
does not agree with what historical linguistic methods have established. Indeed,
one can easily see, for instance, that the position of Portuguese in the subtree is
incorrectly placed closer to Italian and Sicilian, than to Spanish and Catalan. This
example is interesting because the error does not appear to be due to the poormapping
of parameters for these languages: Italian and Sicilian are 100% mapped in SSWL
and Spanish, Catalan, and Portuguese are 84% mapped. So these are among some
of the best recorded languages in the database, and still their respective position in
the phylogenetic tree does not agree with reliable reconstructions from Historical
Linguistics. It is interesting to compare the reconstruction obtained in this way, with
the one obtained, on a different set of syntactic data, by Longobardi’s Parametric
Comparison in [20], which has Italian and French as a pair of two nearby branches,
andSpanish andPortuguese as another pair of nearby branches. This example appears
to outline an issue arising from the way syntactic variables are classified in the SSWL
(as opposed to the different list of syntactic parameters used in [20]). We discuss in
Sect. 6 below some of the problems of dependencies between the SSWL syntactic
variables that may be at the sources of this kind of problem.
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Fig. 1 PHYLIP output
subtree of Latin languages:
jq=Spanish, jb=Catalan,
gz=Sicilian, bq= Italian,
je=Portuguese, fn=French

2.3.2 Placement of Languages in the Wrong Subfamily Tree

Another type of mistake one finds in the naive phylogenetic tree reconstruction from
SSWLsyntactic data is illustratedby theGermanic languages inFig. 2. In this case,we
find that most of the languages in this subtree are correctly grouped together as Ger-
manic, but a language that clearly belongs to a different subfamily is also placed in the
samegroup. It isverypuzzlingwhyAncientNeapolitanendsupincorporatedin the tree
ofGermaniclanguagesratherthennearItalianandtheotherdialectsofItalianinthesub-
tree of Latin languages of Fig. 1. Linguistically, one could perhaps argue that Ancient
Neapolitan did in fact have severalGermanic influences due to theOstrogoths, but it is
more reasonable to expect such influences to appear at the lexical rather than syntactic

Fig. 2 PHYLIP output
subtree of Germanic
languages: dm=Norwegian,
cw=Faroese, hj= Italian
Ancient Neapolitan,
fd= Icelandic, jc=Afrikaans,
ey=West Flemish,
ia=Dutch, hc=German,
gi=Swedish, cg=English
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level.Moreover, thespecificplacementwithin theGermanic treenearFaroese,Norwe-
gianandIcelandic,doesnotnecessarily reflect thishypothesis. In termsof theaccuracy
withwhich these languages are recorded in theSSWLdatabase,AncientNeapolitan is
83%mapped,while its nearest neighbor on this PHYLIP output tree haveNorwegian,
which is alsomappedwith a similar accuracyof 84%, andFaroese and Icelandicwith a
lower accuracy of 69%. It is possible that this example already reflects a problemwith
the different accuracy of mapping of different languages in the SSWL database, or it
may be a problemwith the algorithmic reconstructionmethod itself. There are several
similar instances in the output tree, which point to a problem that is systematic, hence
likely generated by the method of phylogenetic reconstruction adopted in this naive
analysis.

2.3.3 Proximity of Languages fromUnrelated Families

Another typeofproblemthatoccursfrequentlyintheoutput treeof thisnaiveanalysis is
the case of completely unrelated languages (fromcompletely different language fami-
lies) that are placed in adjacent positions in the tree.Wesee anexample inFig. 3,where
theMayanK’iche’ language andGeorgian (Kartvelian family) are placed next to each
other in the tree. Both K’iche’ and Georgian are 69%mapped in the SSWL database.
Although this isnot as accurateamappingas someof the languageswediscussed in the
previous examples, it is nonetheless the same level of precision available, for instance,
forsomeoftheGermaniclanguagesinthepreviousexample,whichwereat leastplaced
correctly in theGermanic subtree. Thus, the type of problemwe see in this example is
not entirely due to poor mapping of the languages involved. It must be also an effect
of other factors like the computational reconstructionmethod used, as in the previous
class of examples. However, there can also be some purely linguistic factors involved.
Namely, there are known cases of languages belonging to unrelated historical linguis-
tic families thatmay appear close at the syntactic level. This type of phenomenonmay
be responsible for at least part of the caseswhere one finds unrelated languages placed
in close proximity in the output tree. This is an indication that one should not rely on
syntactic data alone, without accompanying them with other linguistic data, that can
provide,forexample,apriorsubdivisionoflanguagesintolanguagefamilies.Usingthe
samemethodof phylogenetic tree reconstructionondata alreadygrouped into linguis-
tic families,with individual family treesseparatelyconstructed, improves theaccuracy
of the resulting trees. Other combinations of syntactic and lexical/morphological data
can be used to improve accuracy.

Fig. 3 Misplaced proximity:
io=K’iche’, dj=Georgian
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2.3.4 The Position of Ancient Languages in the Tree

Finally, there is an additional problemone encounters in the naive phylogenetic recon-
struction based on the SSWLdata, namely the position of the ancient languages in the
tree. Clearly, the algorithm assumes that all the data correspond to leaves of the tree
and that the inner nodes are hiddenvariables,while the fact thatwedohaveknowledge
of some of the ancient languages and that several are recorded in the SSWL database
means that some of the inner nodes should in fact carry some of the data. This prob-
lem can be resolved if the inner languages would be placed as a single leaf attached to
thecorresponding innernode.By inspecting the resultingoutput treewesee that some-
times this is thecase, and the innernode towhich thecorrespondingancient language is
attachedreasonablywithrespect tothemodernlanguagesthatderivedfromit.Onesuch
exampleisthepositionofOldEnglishwithrespecttothetreeoftheGermaniclanguages
in Fig. 4. However, in other cases, ancient languages are correctly placed in proximity
of eachother, but in thewrongposition, in the tree,with respect to the resultingmodern
languages. This is the case with Ancient Greek and Latin (see Fig. 5). In this case, the
algorithmcorrectly captures the close syntactic proximitybetweenAncientGreekand

Fig. 4 The position of Old
English with respect to the
Germanic languages:bd= Old
English

Fig. 5 Proximity of Ancient
Greek and Latin: de=Latin,
bx=Ancient Greek,
dz=Medieval Greek
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Latin, but it does not place these two languages correctlywith respect to either the tree
of Latin languages nor the modern part of the Hellenic branch. This problem can be
improved by first subdividing the data into language families and smaller subfamilies
and thenperformthephylogenetic tree reconstructionon thesubfamilies separately, so
that the corresponding ancient language is placed correctly, and then related the result-
ing trees by proximity of the ancient languages. However, this method clearly applies
onlywhereenoughother linguistic information is available, in addition to the syntactic
data.Itshouldbenoted,moreover, that,whileAncientGreekiscorrectlyplacedinprox-
imity toLatin,HomericGreek is entirelymisplaced in thePHYLIP tree reconstruction
and does not appear in proximity of the Ancient Greek of the classical period, even
though both Homeric and Ancient Greek are mapped with the best possible accuracy
(100%mapped) in the SSWL database.

2.4 The Indo-EuropeanTree

Although the many problems illustrated above render a phylogenetic reconstruction
basedsolelyonSSWLdataunreliable, it is stillworthcommentingonwhatoneobtains
with this method regarding some of the controversial early branchings of the Indo-
European tree. Again, the same type of systematic problems illustrated above occur
repeatedly when one analyzes these regions of the output tree.

For example, TocharianAandBare treated by the PHYLIP reconstruction asmod-
ern languages leaves of the tree and placed in immediate proximity of Hittite and in
close proximity of some of the modern Indo-Iranic languages, like Pashto and Pun-
jabi, and a further step away from some Turkic languages like Tuvan. The proximity
of Tocharian and Hittite suggests here a Tocharian-Anatolian branching. The place-
ment of the Indo-Iranic languages in proximity of this Tocharian-Anatolian branching
is likelyarising fromthe fact that the Indo-Iranicbranchof the Indo-European family is
verypoorlymappedin theSSWLdatabase,with theancient languagesentirelymissing
andvery fewof themodern languages recorded, hence the reconstructed treenecessar-
ily skipsover all thesemissingdata.Thecomplete absenceofSanskrit from thecurrent
version of the SSWLdatabase (the entry in the database is just an empty place holder)
in particular causes the phylogenetic reconstruction to miss entirely the proximity of
the Indo-Iranic and the Hellenic branches. Near the subtree shown in Fig. 6 one finds
several instances of misplaced languages of the type discussed in Sect. 2.3.3.

The situation with the Armenian branch is very problematic in the PHYLIP analy-
sis of the SSWLdata. There are three entries recorded in the database:WesternArme-
nian is 68% mapped, while Eastern Armenian appears as two different entries in the
database, one 84%mapped and the other only 52%mapped. Classical Armenian only
appears as an empty place holder with no data in the current version of the database.
These threedatapointsarenotplacedinproximityofoneanother in thePHYLIPrecon-
struction. Western Armenian ends up completely misplaced (it appears in proximity
of Korean and Japanese). This misplacement may be corrected if one first subdivides
data by language families and then runs the phylogenetic reconstruction only on the
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Fig. 6 Tocharian–Anatolian
branching: gb=Tocharian A,
hn=Tocharian B, bv=Hittite,
fk=Pashto, iy=Panjabi,
cx=Tuvan (Turkic)

Fig. 7 Eastern Armenian: cy
= Eastern Armenian (84%),
ee = Pima (misplaced
Uto-Aztecan), ai = Ossetic
Digor, dh= Ossetic Iron

Indo-European data. The bettermapped entry for EasternArmenian is placed in prox-
imity of the subtree of Fig. 6 containing the Tocharian–Anatolian branch and some
Indo-Iranian languages (plus some other misplaced languages from other families).
The nearest neighbors that appear in this region of the tree are Digor Ossetic and Iron
Ossetic: again this is likely an effect of the poor mapping of the Indo-Iranic branch
of the Indo-European family, as in the case of Fig. 6. Another error due to misplace-
ment from an entirely different family occurs, with the Uto-Aztecan Pima placed in
this same subtree, see Fig. 7. This subtree is placed adjacent to a subtree containing a
group of Balto-Slavic languages (and some misplaced languages) with both of these
branches then connecting to the subtree of Fig. 6. The poorly mapped Eastern Arme-
nian entry (52%) is placed as single leaf attached to an otherwise deep inner node of
the tree. Another language that is often difficult to position in the Indo-European tree,
Albanian (68%mapped), ismisplaced in the PHYLIP reconstruction, and placed next
to Gulf Arabic (69%mapped).

These examples confirm the fact that a naive phylogenetic analysis of the SSWL
databasecannotdeliveranyreliable informationonthequestionof theearlybranchings
of the Indo–European tree.
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3 PhylogeneticNetworks

Weverifiedthat thesametypesofproblemsillustratedintheprevioussubsectionsoccur
when theSSWLdataareanalyzedusingphylogeneticnetworks insteadof thePHYLIP
phylogenetic trees.

We compiled the SSWLdata [37], using only the Indo-European languages,which
havemore complete parameter information as a sample set. As in the tree analysis dis-
cussed before, we input the syntactic parameters as a sequence of binary strings into
the phylogenetic networks programs.

The Splitstree 4 program2 generated a split tree, which is intuitively a con-
fidence interval on trees. The farther from ‘tree-like’ the generated tree, the less any
given tree is able to describe the evolutionof the languages.Theoutput of this program
indicated that the phylogenetics of languages analyzedon thebasis of SSWLsyntactic
parameters diverges strongly from being tree-like. As discussed before, this may be
regarded as further indication of systematic problems that create high uncertainties in
the candidate trees. These are again an illustration of the effect of a combination of the
factors (1)–(4) listed in Sect. 2.3.

We also fed the same data to theNetwork5 program.3 This generated a phyloge-
neticnetwork, using themedian-joiningalgorithmwhich represents all of the shortest-
path length (maximum parsimony) trees which are possible given the data.

We discuss below some of the aspects of the network generated by Splittree
4 in comparison to some of the outputs described above obtained with the PHYLIP
phylogenetic trees. Figure8 illustrates a large region of the phylogenetic network pro-
duced by Splittree 4 using the entire set of SSWL data. It is evident that some of
the same problems we have discussed before occur in this case as well, in particular
the misplacement of the ancient languages with respect to their modern descendent
(see the position of Latin and Ancient Greek, for example). However, with respect to
the PHYLIP results discussed above, we see less instances of languages that get com-
pletely misplaced within the wrong family. For example, as one can see from Figs. 9
and 10, Ancient Neapolitan now appears correctly placed in the Latin languages (and
near Spanish) rather thanmisplaced among theGermanic languages as inFig. 2.How-
ever, one can see that other problems that occurred in the PHYLIP reconstructions for
thisgroupof languagesare still present in theSplittree4network.Forexample, as
in Fig. 1, Portuguese appears closer to Italian than to Spanish in the network of Fig. 9,
contrary to the general understanding of the phylogenetic tree of the Latin languages.
(Wewill discuss the caseof the subtreeof theLatin languagesmore indetail inSect. 5.)
Misplacements of languageswithin these smaller subfamilies are still occurring, how-
ever:onecansee that, forexample, in thepositioningof theRomance languageOccitan
in the regionof thephylogenetic network inproximityofGermanic languages likeOld
Norse and Icelandic in Fig. 10.

2http://ab.inf.uni-tuebingen.de/data/software/splitstree4/download/manual.pdf.
3http://www.fluxus-engineering.com/Network5000_user_guide.pdf.

http://ab.inf.uni-tuebingen.de/data/software/splitstree4/download/manual.pdf
http://www.fluxus-engineering.com/Network5000_user_guide.pdf
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Fig. 8 Phylogenetic network produced by Splittree 4 on the entire SSWL database

Fig. 9 Latin languages region of the phylogenetic network
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Fig. 10 Germanic languages region of the phylogenetic network

The results of the Splittree 4 phylogenetic networks analysis of the Indo-
European languages are available as the fileIndo_Euro.nex, which can be down-
loaded at the URL http://www.its.caltech.edu/~matilde/PhylogeneticSSWL2.

4 PhylogeneticAlgebraicGeometry

Given theunsatisfactory resultsoneobtains inanalyzing theSSWLdatabasewith soft-
wareaimedatphylogeneticreconstructions,onecanturntheproblemonitsheadandtry
toobtain specificquantitativeestimatesof the levelof reliabilityorunreliabilityof spe-
cific subsets of the SSWL data for the purpose of phylogenetic, by relying on existing
reconstructions of linguistic phylogenetic trees, obtained by other linguistic methods
and other sources of data, which are considered reliable reconstructions. The problem
is then to test the distribution at the leaves of the tree obtained from the SSWL data

http://www.its.caltech.edu/~matilde/PhylogeneticSSWL2
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with specific polynomial invariants associated to a given reliable tree. Such invariants
would be vanishing on a probability distribution at the leaves obtained from an evolu-
tionary processmodeled by aMarkovmodel on the tree, hencewe canuse the estimate
of how far the values are from zero as a numerical estimate of a degree of unreliability
of the data for phylogenetic reconstruction.Again, this does not identify explicitly the
source of the problem, among the various possible causes outlined above, but it still
gives a numerical estimate that can be useful in trying to improve the results. We pro-
posehere tousemethods fromphylogenetic algebraicgeometrydevelopedbyPachter,
Sturmfels, et al. [11, 24, 25, 35] to achieve this goal.Wefirst give a quick reviewof the
mainsettingofphylogeneticalgebraicgeometryand thenweillustrate insomespecific
examples howwe intend to use these techniques for the purpose described here.

4.1 PhylogeneticModels:GeneralAssumptions

The basic setup for linguistic phylogenetic models consists of a dynamical process
of language change (which in our case means change of syntactic parameters), con-
sidered as a Markov process on a binary tree (a finite tree with all internal vertices of
valence 3).

It canbearguedwhether trees reallygive thebest account of languagechangebased
on syntactic data, rather than more general non-simply-connected graphs (generally
referred to as “networks”). We will return to discuss some empirical reasons in favor
of phylogenetic networks instead of trees in Sect. 6. Themathematics of phylogenetic
networks is discussed at length in [14, 15]. About the use of phylogenetic networks in
Linguistics, see [23].

Another general assumptionof phylogeneticmodels,which requires careful exam-
ination in the case of applications to Linguistics, is the usual assumption that the
variables (binary variables in the case of syntactic parameters) behave like indepen-
dent identically distributed variables, whose dynamics evolves according to the same
Markov process. This assumption is especially problematic when dealing with syn-
tactic parameters because of the presence of relations between parameters that are not
entirely understood, so that it is currently extremely hard to ensure one is using a set of
independentbinaryvariables.Moreover,while acceptable infirst approximation, even
the assumption that the underlying Markov model driving the change should be the
same for all syntactic parameters appears problematic.The fact that different syntactic
parameters have very different frequencies of occurrence amongworld languages cer-
tainly suggests otherwise.Wewill return to this point in Sect. 6 and suggest a possible
approach, based on the results of [26], to correct, at least in part, for this problem.

The leaves of the tree correspond to themodern languages with observed values of
the parameters giving a joint probability distribution

P(X�1 = i1, . . . , X�n = in) = pi1,...,in , (4.1)
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with ik ∈ {0, 1}, andwith n the number of leaves. Here the quantity pi1,...,in represents
thefrequencywithwhichsyntacticparametersof the languages�1, . . . , �n at the leaves
of the tree have values (i1, . . . , in) ∈ {0, 1}n , respectively.

In theusual settingofMarkovmodels for phylogenetic reconstructions, one further
assumes that all the inner nodes are hidden variables and that only the distribution at
the leaves of the tree is known. Here again we encounter a problem with respect to
applicationstoLinguistics.Incertainlanguagefamilies,liketheIndo-Europeanfamily,
several ancient languageshaveknownparameters. In theSSWLdatabase, for instance,
Ancient Greek is one of the very few languages that are 100%mappedwith respect to
their list of 115 parameters. Thus, one needs to consider some of the inner vertices as
known rather than hidden.Oneway to do that is to consider a single leaf coming out of
someof the inner vertices thatwill correspond to theknownvalues of theparameters at
thatvertex.AswediscussedinSect. 2.2,oneencountersproblemswiththeplacementof
theancientlanguagesinthePHYLIPreconstructionofthesyntacticphylogenetictrees,
which should be corrected for. Better results are obtained when one first separates out
thedata into language families andsubfamilies andbuilds trees for smaller subfamilies
first, including the known data about the ancient languages, and then combines these
treesintoalargertree.ThisprocedureavoidsthetypeofproblemmentionedinSect. 2.2,
by which the greater syntactic similarity between some of the ancient Indo-European
languages like Latin andAncientGreek is detected correctly, but in turn prevents their
respective placement in the correct positionwith respect to themodern languages that
originated from them.

For a given set of n leaves, there are

τn = (2n − 4)!
(n − 2)!2n−2

different possible binary tree topologies. Clearly, it is not a computationally efficient
strategy to analyze all of them. However, one would like to have some computable
invariants thatonecanassociate toagivencandidate treeT ,whichestimateshowaccu-
rate T is as a phylogenetic tree, among all the τn possible choices, given knowledge of
thejointprobabilitydistribution (4.1)at the leaves.ThePhylogeneticAlgebraicGeom-
etry approach (see [24, 25] and the survey [4]) aims at constructing such phylogenetic
invariants using Algebraic Geometry and Commutative Algebra.We review themain
ideas in the next subsection.

4.2 PhylogeneticVarieties and Ideals

We consider here the Jukes–Cantor model describing a Markov process on a binary
rooted tree T with n leaves. The stochastic behavior of the model is determined by
the datum of a probability distribution (π, 1 − π) at the root vertex (the frequency of
expression of the 0 and 1 values of the syntactic parameters at the root) and the datum
of a bistochastic matrix
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Me =
(
1 − pe pe

pe 1 − pe

)

along each edge of the tree. These data (π, Me) are often referred to in the literature as
parametersof themodel. Inorder toavoidconfusionwithouruseof the termparameter
for the syntactic binary variables, we will refer to the (π, Me) as “stochastic parame-
ters”. For a tree T with n leaves, and variables with k states, the number of stochastic
parameters is

N = (2n − 3)k(k − 1) + k − 1.

In our case, with binary variables, we have k = 2 and the number of stochastic param-
eters of themodel is simply N = 4n − 5.

Phylogenetic invariants are polynomial functions φ that vanish on all the expected
distributions pin ,...,in at the tails of the tree T , for all values of the stochastic parameters
(π, Me).

The simplest example of such an invariant is the linear polynomial

φ(zin ,...,in ) = −1 +
∑

in ,...,in

zin ,...,in ,

since the joint distribution at the leaves is normalized by
∑

in ,...,in
pin ,...,in = 1. This

invariant is uninteresting, in the sense that it is independent of the tree T , hence it
does not provide any information about distinguishing between candidate phyloge-
netic trees. In general one seeks other, more interesting, phylogenetic invariants φT ,
and the minimum number of such invariants required for phylogenetic inference. An
answer to thisquestion isprovidedbyAlgebraicGeometry, as shown in [1, 24, 25, 35].

Consider the polynomial ringC[zi1,...,in ], wheren is the number of leaves of the tree
andand ik ∈ {0, 1} for all k = 1, . . . , n. Thephylogenetic invariants are definedby the
vanishing φT (pi1,...,in ) = 0. This condition determines an ideal IT in the polynomial
ring. For aMarkovmodel as above, with N = 4n − 5 stochastic parameters (π, Me),
one obtains a polynomial map

� : C
4n−5 → C

2n

that assigns�(π, Me) = pi1,...,in . This is, more explicitly, of the form

pi1,...,in = �(π, Me) =
∑

wv∈{0,1}
πwvr

∏
e

Me
ws(e),wt (e)

,

withasumover“histories” (paths in the tree) consistentwith thedataat the leaves.This
determines an algebraic variety, the phylogenetic variety, given by the Zariski closure

VT = �(C4n−5) ⊂ C
2n

.
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Dually we have amap

� : C[zi1,...,in ] → C[x1, . . . , x4n−5]

with Ker� = IT , where IT is the phylogenetic ideal.
One canusephylogenetic invariants to select betweencandidate phylogenetic trees

in the following way. Suppose one obtains, through some phylogenetic algorithm, a
candidate phylogenetic treeT. One also has available the joint probability distribution
(4.1) of the binary variables at the leaves. By evaluating phylogenetic invariants φT ∈
IT at the observed distribution pin ,...,in , one can check whether the candidate tree T
satisfies ∣∣φT (pin ,...,in )

∣∣ < ε (4.2)

for all phylogenetic invariantsφT ∈ IT , and for a fixed error size ε. The candidate tree
T is an acceptable phylogenetic tree if and only if the estimate (4.2) is satisfied. Geo-
metrically, the test (4.2) can be rephrased as the property that the point pi1,...,in ∈ C

2n

is ε-close to the phylogenetic variety VT if and only if T is an acceptable phylogenetic
tree. Computationally, this method requires obtaining a set of explicit generators for
the phylogenetic ideal IT .

In the caseof the Jukes–Cantormodelwithk = 2, itwasproved in [35] that thephy-
logenetic ideal IT is generated by polynomials of degree two. A completely explicit
set of generators for the Jukes–Cantor model with k = 2 was obtained in [1], where
it is proved that phylogenetic ideal IT generated by the 3 × 3-minors of all edge flat-
tenings of the tensor P = (pi1,...,in ). The edge flattenings are defined by the following
procedure. Start with a tree T withMarkovmodel (π, Me) andwith P ∈ C

2n
the joint

probability distribution P = (pi1,...,in ) at the n leaves. The choice of an edge e in a tree
T with n leaves determines two connected components of T � {e}, hence two sets of
leaves {�1, . . . , �r } and {�r+1, . . . , �n}. Thus, the 2n binary variables at then leaves are
partitioned intoasetof2r variablesandasetof2n−r variables, and the jointdistribution
P = (pi1,...,in ) determines a 2r × 2n−r -matrix Flate,T (P) specified by setting

Flate,T (P)(u, v) = P(u1, . . . , ur , v1, . . . , vn−r ).

It can be shown that the rank of this matrix is rank(Flate,T (P)) ≤ 2 (for binary vari-
ables, k = 2), hence all 3 × 3minors of thematrixmust vanish. It is shown in [1] that,
for k = 2 any number n of leaves, the phylogenetic ideal IT is generated by the 3 × 3
minors of thematrices Flate,T (P) of all edge flattenings. It is easy to see that, even for
small trees, there is a very large number of these 3 × 3 minors, hence the number of
generators of the phylogenetic ideal grows rapidly with the size of the tree.

Note that, while for the purpose of validating a candidate phylogenetic tree T it
would be necessary to check that all these generators of the phylogenetic ideal vanish
[or nearly vanish as in (4.1)], in order to invalidate a candidate tree it sufficed to find at
least one of these 3 × 3minors for one of the flattenings that evaluates on the observed
joint distribution P = (pi1,...,in ) to a value larger than the allowed error size ε.
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5 Phylogenetic Invariants andSyntacticTrees

In this sectionwe showhowphylogenetic invariants can be used to improve the phylo-
genetic tree reconstructions based on SSWL syntactic data.

5.1 Phylogenetic Invariants of Small Syntactic Trees

We focus here on sufficiently small subtrees of the syntactic phylogenetic tree of lan-
guages compiled from the SSWL data, for which the computation of phylogenetic
invariantsbecomesfeasible.Usingphylogeneticinvariants,wecomparethesmall trees
obtained in this waywith phylogenetic trees obtained by other linguistic methods and
considered reliable, so as to estimate the validity of the joint distribution at the leaves
obtained from SSWL data.

We present here an example, based on the subtree of the Latin languages within
the Indo–European family. A more detailed analysis of other subtrees of the Indo–
European family will be presented elsewhere.

We have seen in Sect. 2.3.1 that the naive PHYLIP analysis of the entire SSWL
databasemisplacesPortuguese in the subtreeof the Indo-European languages that col-
lects the Latin languages. We have also seen in Sect. 2.3.4 that the same analysis mis-
placesLatin, separating it fromthe treeof themodern languages thatoriginated fromit.

Wenowperformamoreaccurateanalysis, stillusingonly theSSWLdata,butwhere
we use the a priori knowledge of the grouping of certain languages into a subfamily.
Thus, we select only the languages Latin, Italian, French, Spanish, Portuguese.

The phylogenetic tree that is generally agreed, through other linguistic reconstruc-
tions, tobest represent the relativepositionof these languageswouldbea tree topology
as illustrated inFig. 11.Note that this isalso the treereconstructionfor thisgroupof lan-
guagesobtainedin[20]usingasetofsyntacticparametersdifferentfromthoserecorded
in the SSWL database.

Fig. 11 Tree topology for
the phylogenetic tree of the
Latin languages, with �1 =
French, �2 = Italian, �3 =
Latin, �4 = Spanish, �5 =
Portuguese
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The tree of Fig. 11 has two possible splits: {�1, �2} ∪ {�3, �4, �5} and {�1, �2, �3} ∪
{�4, �5}. The corresponding flattenings are given by thematrices

Flate1(P) =

⎛
⎜⎜⎝

p00000 p00001 p00010 p00011 p00100 p00101 p00110 p00111

p01000 p01001 p01010 p01011 p01100 p01101 p01110 p01111

p10000 p10001 p10010 p10011 p10100 p10101 p10110 p10111

p11000 p11001 p11010 p11011 p11100 p11101 p11110 p11111

⎞
⎟⎟⎠

Flate2(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p00000 p00001 p00010 p00011

p00100 p00101 p00110 p00111

p01000 p01001 p01010 p01011

p01100 p01101 p01110 p01111

p10000 p10001 p10010 p10011

p10100 p10101 p10110 p10111

p11000 p11001 p11010 p11011

p11100 p11101 p11110 p11111

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the pi1,i2,i3,i4,i5 are the frequencies of the observed binary variables at the ends,
under the assumption that these behave like independent equally distributed random
variables, evolving according to the sameMarkovmodel on the tree.

UsingthedataofSSWLparametersforthesefivelanguagesreportedintheAppendix,
we obtainmatrices Flate1(P) and Flate2(P) of the form

Flate1(P) =

⎛
⎜⎜⎜⎝

31
106

1
106

1
106 0 23

106
3
106 0 1

53
1

106 0 0 1
106 0 1

106 0 3
106

5
106 0 1

53 0 0 0 0 0
1
53 0 1

106
4
53 0 0 0 21

106

⎞
⎟⎟⎟⎠

Flate2(P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

31
106

1
106

1
106 0 0

23
106

3
106 0 1

53 0
1

106 0 0 1
106 0

0 1
106 0 3

106 0
5

106 0 1
53 0 0

0 0 0 0 0
1
53 0 1

106
4
53 0

0 0 0 21
106 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Evaluating all the 3 × 3 minors of these matrices with Maple and selecting the
maximum absolute value of the resulting phylogenetic invariants gives

max
∣∣φT (pi1,...,i5)

∣∣ = 2415

1191016
= 0.0020277. (5.1)
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The fact that for the tree of Fig. 11 the distribution at the leaves determined by the
SSWLparameters is extremely close to being a zero of all the phylogenetic invariants
implies that the SSWL parameters are in fact in very good agreement with the recog-
nized correct topology of the phylogenetic tree, but only when the set of languages is
previously restricted to a smaller subfamily and only the SSWL parameters that are
fully mapped for that subfamily are taken into account.

Thisresultseemstoindicatethatthemainsourceoftheproblemsweencounterwhen
doinganaivephylogeneticanalysisusing theentireSSWLdatabasearenotnecessarily
due to an intrinsic problemwith the SSWLdata [that is, it is not primarily due to prob-
lem number (3) in the list in Sect. 2.3]. It seems rather that the problems encountered
above stem from a combination of problems (1), (2), and (4). The use of the phyloge-
netic invariants method bypasses problem (1), while the prior restriction to a smaller
subfamily bypasses problems (2) and (4). A more detailed analysis of this approach
with phylogenetic invariants and computations of likelihood via Euclidean distances,
applied toother language subfamiliesusingSSWLdatawill be carriedoutmoreexten-
sively elsewhere [33].

6 Dependencies andGeometry

As we already mentioned above, the problem of the construction of reliable syntac-
tic phylogenetic trees is closely related to the problem of relations and dependencies
between syntactic parameters. Are there universal relations that hold across all lan-
guages? Are there relations that depend on language families? Can these relations be
expressed geometrically, as is the casewith relations between continuous coordinates
that give rise to topological ordifferentiablemanifolds?Are theredifferent geometries
associatedtodifferentlanguagefamilies?Howdetectablearerelationsbetweensyntac-
ticparameters computationally?Recently, amathematical approach to thesequestions
was proposed in [22, 26, 29, 34].

In [29], it was shown, again using SSWL data, that syntactic parameters of differ-
ent language families have different persistent homology. The persistent generators
of H0 appear to correspond to a subdivisions of a given language family into major
subfamilies, such as, for example, the Indo-Iranic and theEuropean subfamilies of the
Indo-European family, or the Mande, Atlantic-Congo, and Kordofanian subfamilies
of the Niger-Congo family. A persistent generator of the H1 was found in the case of
the Indo-European family. It appears tobe related to thepositionof theHellenicbranch
in the Indo-European family. It is presently unclear whether this reflects the effect of
a genuine historical-linguistic phenomenon, such as an influence ofAncient Greek, at
the syntactic level, upon some other European languages (such as some of the Slavic
languages), whether it detects the presence of homeoplasy in syntactic parameters, or
whether it is due to the nature and format of the syntactic data collected in the SSWL
database. However, the presence of non-trivial persistent generators of the H1 in the
persistent homology of the data set is a strong indicator that networks (non-simply-



438 K. Shu et al.

connected graphs) and not trees may provide a better topology for syntactic phyloge-
netic linguistics.

In [26], it was shown that, to some extent, the presence of dependencies between
the syntactic parameters listed in the SSWL database can be detected using Kanerva
networks. The latter were introduced in [16] as sparse distributed memories aimed at
modeling associative memory in neuroscience. It is well known that, in fact, Kanerva
networks are very useful for reconstructing corrupted data and detecting the degree
of recoverability of certain parts of the data as a function of the remaining ones. In
particular, this makes them suitable for detecting the presence of relations between
data. It was shown in [26] that different syntactic parameters in the SSWL database
exhibit different degrees of recoverability in aKanerva network. An overall effect can
be identified,whichdependson the frequencywithwhichacertainsyntacticparameter
is expressed acrossworld languages. This effect can be reproduced using randomdata
with the same frequencies. However, there is an additional effect that can be detected
normalizing with respect to the frequency and that should be a genuine expression of
the level of dependence of a particular syntactic parameter upon the remaining ones.
The resulting normalized score computed in [26] is therefore a numerical estimate
of the degree of dependence/independence of a given binary syntactic variable. The
presenceof these computationally detectable dependence relations affects someof the
fundamental assumptions of the Markov models of phylogenetic trees, in particular
the assumption that all the binary variables are independent, identically distributed
variables. A possible way to compensate for this problem in themodel it to consider a
weighted version of the joint probability distribution P = pi1....,in at the leaves of the
phylogenetic tree, where the frequency of expression of the parameters is computed
in such away that each parameter isweighted according to the corresponding normal-
ized degree of recoverability in aKanerva network, in such away that the independent
variables are weighted more than the dependent ones. This restores the fact that the
independent variables assumption of theMarkovmodel can be at least approximately
satisfied.
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Appendix:TheSSWLParameters of theLatin languages

The phylogenetic invariants for the tree of Latin languages of Fig. 11 are evaluated at
the probability distribution pi1,i2.i3,i4,i5 at the leaves, based on the SSWL parameters
for this group of languages. There are 106 parameters in the SSWL database that are
completely mapped for all of these five languages. We have excluded from the list all
those SSWL parameters that are only mapped for some but not all of the languages in
this group.With the notation �1 =French, �2 = Italian, �3 =Latin, �4 =Spanish, and



Syntactic Phylogenetic Trees 439

�5 =Portuguese, the syntactic parameters are given by the following list. The column
on the left lists the SSWL parameters P as labeled in the database, [37].

One can see by inspecting the different groups of parameters in this list that several
parameters within the “same group” tend to behave in the same way (e.g. all the Neg
parameters) or in more highly correlated way than across groups of parameters. This
observation is consistentwith themore general observation of dependencies observed
through the Kanerva networks method in [26]. Thus, in order to better fit this set of
binary variables with the hypothesis of independent equally distributed variables in
Markov processes, itmay be better to select a subset of the SSWLparameters that cuts
across the various groups of more closely correlated variables. We will discuss this
aspect more in details elsewhere.

The probability pi1,i2.i3,i4,i5 is then computed by counting the frequencies of occur-
renceofbinaryvectors[i1, i2, i3, i4, i5]ε{0, 1}5 amongthe106vectorsofSSWLparam-
eters above. The only nonzero frequencies are

p0,0,0,0,0 = 31

106
, p0,0,0,0,1 = 1

106
, p0,0,0,1,0 = 1

106
, p0,0,1,0,0 = 23

106
,

p0,0,1,0,1 = 3

106
, p0,0,1,1,1 = 2

106
, p0,1,0,0,0 = 1

106
, p0,1,0,1,1 = 1

106
,

p0,1,1,0,1 = 1

106
, p0,1,1,1,1 = 3

106
, p1,0,0,0,0 = 5

106
, p1,0,0,1,0 = 2

106
,
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p1,1,0,1,0 = 1

106
, p1,1,0,0,0 = 2

106
, p1,1,0,1,1 = 8

106
, p1,1,1,1,1 = 21

106
.

Note how these frequencies confirm some well known facts about the Latin lan-
guages. Syntactic parameters (as recorded in SSWL) are very likely to have remained
the same across all five languages in the family, with a higher probability of a feature
not allowed in Latin remaining not allowed in the other languages (31/106) than of a
feature allowed in Latin remaining allowed in the other languages (21/106). It is also
very likely that a feature is the same in all the modern ones but different from Latin,
with a much higher incidence of cases of a feature allowed in Latin becoming disal-
lowed in all the other languages (23/106) than the other way around (8/106). Among
the remaining possibilities, we see incidences where French has an allowed feature
that is missing in the other languages (5/106) of disallowed (3/106) and cases where
Latin and Portuguese have the same feature allowed, which is disallowed in the other
languages (3/106): all other nonzero entries have only two or less occurrences. The
resultingmatrices for the edge flattenings of the tree of Fig. 11 are then as computed in
Sect. 5.
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